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Preface

In this note I provide solutions to all problems and final projects in the book An Intro-
duction to Quantum Field Theory by M. E. Peskin and D. V. Schroeder [1], which I worked
out and typed into TEX during the first two years of my PhD study at Tsinghua University.
I once posted a draft version of them on my personal webpage using a server provided by
Tsinghua, which was however closed unfortunately after I graduated. Since then I received
quite a number of emails asking for the solutions, so I decided to put them on arXiv.*

Nothing much has been updated in this note compared with the previous draft due to
the lack of time, except for some editorial work, as well as a few newly added references.
In particular, I don’t have enough time to proofread and therefore I cannot guarantee the
correctness of them, though I expect that most of them are correct. With that said, any
feedback via emaill about errors, either physical or typographical, is much appreciated.

I would not claim any novelty or originality of this note, since almost all of problems in
the book belong to standard material of quantum field theory. Occasionally, I learned the
answer to a problem or the strategy for solving it before I started to work it out. But still,
I believe that the problem set in the book will always remain a treasure to any beginner of
this subject, and I feel it worthy to write up the solutions.

The contraction macro provided by the authors of the book* has been used in this note.

I would like to express my gratitude to Prof. Qing Wang and Prof. Hong-Jian He for
their wonderful courses of quantum field theory and their great help in my early days of
learning this subject. I would also like to thank Prof. Michael Peskin in particular, for his
generous permission and kind encouragement to letting me publish this note.

Comments on notations. All notations and conventions are the same with the book.
The book will be cited in the main text as “P&S” for short. The +ie prescription for
Feynman propagators is always assumed and is usually hidden.

*The submission, however, was rejected by one of arXiv volunteer moderators based on the reason that
“arXiv does not allow submissions containing solutions to problems in physics textbooks”, and that “(the)
moderators consider that this type of submissions are harmful for students and instructors”. Insofar as I
can see, however, the solution can only do harm to those who are willing to do harm to themselves.

txjanyuzhongzhi@gmail.com

thttp://physics.weber.edu/schroeder/qftbook.html
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Chapter 2

The Klein-Gordon Field

2.1 Classical electromagnetism

In this problem we derive the field equations and energy-momentum tensor from the

following action of classical electrodynamics,

1
S-- /d4:p F,.,F", with F,, = 9,4, — 0,A,. (2.1)

(a) Maxwell’s equations To take variation of the classical action with respect to the
field A,, we note,

5 é{’jﬁ) = 0,05 — 6,07, (;Z“‘: =0. (2.2)
Then from the first equality we get:
0 (B F™) = 4. (2.3)
6(0rAx)
Now substitute this into Euler-Lagrange equation, we have,
0= a“(a(ii,,)) - 552 . (2.4)

This is sometimes called the “second pair” of Maxwell’s equations. The so-called “first pair”
follows directly from the definition of F},, = 9,4, — 0,A,, and reads

O\Fou + 0, Fy» + 0,F = 0. (2.5)

The familiar electric and magnetic field strengths can be written as F' = —F% and ¢7*B* =
—F  respectively. From this we deduce the Maxwell’s equations in terms of E* and B

OE =0, ek BF — 9°E" = 0, eV EF =0, 0'B" = 0. (2.6)
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(b) The energy-momentum tensor The energy-momentum tensor can be defined to be
the Nother current of the space-time translational symmetry. Under space-time translation

the vector A, transforms as,
oHAY = oM A, (2.7)

Thus or .
T = = 9V Ay — L = —FM " Ay + —n* Py . 2.8
99,4, AT (2.8)

Obviously, this tensor is not symmetric. We can add an additional term 9y K> to T" with

KM antisymmetric with its first two indices. It’s easy to see that this term does not affect
the conservation of 7". So if we choose KM = F#*A¥_ then,

N 1
TH =T + 0, KM = FIME\" + ZU“VFMFM. (2.9)

Now this tensor is symmetric and is sometimes called the Belinfante tensor in literature.
We can also rewrite it in terms of E* and B,

T = E(EZEZ +B'BY, T =T%=¢"*"EipF ectc. (2.10)

2.2 The complex scalar field
The Lagrangian is given by,

L=0,0"0"p — m?¢*¢. (2.11)

(a) The conjugate momenta of ¢ and ¢*:

oL . ._oc .,
W_a_é_(ﬁ’ W—aé*—¢—7r. (2.12)
The canonical commutation relations:
[9(x), 7(y)] = [¢"(x), 7" (y)] = i0(x — ), (2.13)

The rest of commutators are all zero.

The Hamiltonian:

H= /d3x (mS + Tt — L) = /d3x (m*7m + V¢ - Vo + m’¢ o). (2.14)

(b) Now we Fourier transform the field ¢ as:

d3p 1 —ip-x ipx
1

thus:

(bpe—ip'x + ageif”). (2.16)



2.2. The complex scalar field

Substitute the mode expansion into the Hamiltonian:

H = / 3z (gb*qb +Vo*-Vo+ m2¢*gb)
d3q

d3
oo
(2m)3\/2E, (2m)3\/2E,
X [Equ (aLeiP'm — bpe_ip"”> <aqe_iq'x - bgeiq'z)

+p- q(a;r,eip'x — bpe_ip'x> (aqe_iq'”" — bLeiq'x)

+m? (ai,eip’x + bpe_ip'x> <aqe_iq'x + bgeiq'xﬂ

d3q

:/ d%/ (2w)§3ﬁ(2w)3\/m

x {(Equ +p-q+m?) (aLaqei@*q)w + bpbge*i@*qﬂ)

— (EyEq +p-q—m?) <bqaq67i(p+q).x 4 angei(mq).x)}

_/ d3p d3q
) (2n)3\/2E, (27)3\/2E,
X [(Equ +p-q+m? <aLaqei(EP_E°‘)t + bpbge_i(EP_EQ)t> (2m)%6®) (p — q)
~ (BpEq +p - = m?)(baaqe™ P o) 1 al bl PP ) (2m) ) (p + q>}

/d3 Ep +p?+m?
= T
2E,

(aLap + bpr)

= / d*z Ep (alap + bLbp + [bp, b)), (2.17)

where we have used the mass-shell condition E, = /m? + p2. Note that the last term
contributes an infinite constant, which can be interpreted as the vacuum energy and can

be dropped, for instance, by the prescription of normal ordering. Then we get a finite
Hamiltonian,

H= / &Pz By (afap + blbp), (2.18)
Hence we get two sets of particles with the same mass m.

(c) The theory is invariant under the global transformation: ¢ — €?¢, ¢* — e~?“¢*. The
corresponding conserved charge is:

Q=i | &z ("¢ — ¢"¢). (2.19)
Rewrite this in terms of the creation and annihilation operators:

Q=i[ d(¢"0— ")
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= 1/d3x/ d3p d3q [(bpe—ip-r 4 CLT eip.z> 2 <aqe—iq-x + b‘[ eiq-z>
(2m)3\/2E, (2m)3\/2E4 P t a

0 —ip-x ip-x —ig-x ig-x
- (e ) (a4t
d3q

d®p . : : .
— 3 —ip-x t ipx —igx 171 Jigx
_/d x/ (2m)3\/2E, (27)3/2E, [Eq(bpe T ape” )(aqe T bt >

- E, (bpe_ip'm — aLeip'x> <aqe_iq'x + bileiq'xﬂ

d3q

:/ d%/ (2w)§3§E (2)+/2E,

+ (Eq + Ep) (aLaqei(p‘q)"” — bpbge‘i(p‘q)“ﬂ

[(Eq — Ep) (bpaqe_i(pﬂ)w - ai)bzlei(pﬂ)‘z)

:/ d3p d3q
(27)3+/2E, (21)3+/2Ey
X {(Eq — Ep) (bpaqeii(EerEq)t - aLbLei(Ep+eq)) (2m)*6® (p + q)
(B (ahage B 50" — 0,1 B 50 ) 250 p )
d3p
= / M . 2Ep(ai,ap — bpb;r))

- / (;17’;3 (afap — Bibp), (2.20)

where the last equal sign holds up to an infinitely large constant term, as we did when
calculating the Hamiltonian in (b). Then the commutators follow straightforwardly:

[Q,a"l=d",  [Q,b] =", (2.21)

We see that the particle a carries one unit of positive charge, and b carries one unit of
negative charge.

(d) Now we consider the case with two complex scalars of same mass. In this case the
Lagrangian is given by

L=0,00rd, — m*dlo, (2.22)

where ®; with + = 1,2 is a two-component complex scalar. Then it is straightforward to
see that the Lagrangian is invariant under the U(2) transformation ®; — U;;®; with U;; a
matrix in fundamental representation of U(2) group. The U(2) group, locally isomorphic to
SU(2) x U(1), is generated by 4 independent generators 1 and +77, with 7* Pauli matrices.
Then 4 independent Nother currents are associated, which are given by,

or oc . o -
8@@0&5@' - WACDi = —(0,97)(19;) — (9, P;)(—i®;7),

ju:_
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@ 8£ —_— 8£ — i
5= gy 0 ey Y = 5@t - @] (2.29)

The overall sign is chosen such that the particle carry positive charge, as will be seen in the
following. Then the corresponding Nother charges are given by,

Q=— i/d?’x (P d; — ydy),
Q" =- %/dgx [ (7);j®; — @7 (7%);®5]. (224)

Repeating the derivations above, we can also rewrite these charges in terms of creation and
annihilation operators, as,

t
lpalp bip bip) )

1 d3 t a t a
RS -

The generalization to N-component complex scalar is straightforward. In this case we

only need to replace the generators 7¢/2 of SU(2) group to the generators t* in the funda-
mental representation of SU(N) group with commutation relation [¢%, t°] = i f®¢c.

Then we are ready to calculate the commutators among all these Nother charges and
the Hamiltonian. Firstly we show that all charges of the U(N) group commute with the
Hamiltonian. For the U(1) generator, we have

d3p d3q
1 28 i om0

—~

% _dq f t it
= (27‘1’)3 (27‘(’)3 Eq (aip[aipa ajq](qu + ajq[aip, ajq]aip + ((Z — b))

d3p d3q ; ;
= / (27‘(‘)3 (271')3 Eq (a/ipa/iq — GijqQip + (a — b)) (271-)35(3) (p . q)
- (2.26)

Similar calculation gives [@Q%, H] = 0. Then we consider the commutation among internal
U(N) charges:

a d3p d3q a t 4a
@, Q" = /(27)3 (2)3 [(a ti;ajp — bipti;b; ) (azqt&afq_bzqt&bfq)]

dgp d3q . )
- /(27r) 3 (2m)3 ( Zptwtﬂafq a;zthztejajp + (a— b)>(2ﬂ)35(3)(p—q)
awe [ p . .
=if b /( 7r)3 <a t; 0jp — b;rptwb >
= i, .
and similarly, [@Q, Q] = [Q%, Q] = 0.
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2.3 The spacelike correlation function
We evaluate the correlation function of a scalar field at two points,

D(z —y) = (0lo()o(y)|0), (2.28)

with © — y being spacelike. Since any spacelike interval x — y can be transformed to a form

such that 2° — 4% = 0, thus we will simply take:
2 —9y°=0, and |x—y/*=r>0. (2.29)

Now:

3 3
D(x —y) = / _d P Le*m(%y) _ / d°p 1 P (x—y)
(2m)3 2E, (2m)3 24/ m?2 + P2

1 27 1 0 p2 ) 0
d / dcos@/ dp———=—0"""
(2m)3 /0 4 —1 0 pQ\/m2 + p?

—i o0 pelP
_ d v 2.30
2(271')27" /—oo p,/rn2 —|—p2 ( )

Now we make the path deformation on p-complex plane, as is shown in Figure 2.3 of P&S.

Then the integral becomes,

D(x —y) = L /OO dp pe” . m Ky (mr). (2.31)
Am2r .. p2—m2 A



Chapter 3

The Dirac Field

3.1 Lorentz group
The generators of Lorentz group satisfy the following commutation relation,

[J/LV’ Jpo'] — ‘(gupJ,u,U _ gupJVO' _ gTLUO'J;Lp + gua(]l/p). (31)

(a) Let us redefine the generators as L' = +¢“%J/% (All Latin indices denote spatial
components), with L’ generate rotations, and K® generate boosts. The commutators of

them can be derived straightforwardly to be,
(L}, L7] = ie"* L, (K, K] = i€k Lk, (3.2)
If we further define Ji = %(Ll +iK"), then the commutators become,
[JL, J]] = i€k gk [Ji, 7] =0. (3.3)

Thus we see that the algebra of the Lorentz group is a direct sum of two identical algebra
su(2).

(b) It follows that we can classify the finite dimensional representations of the Lorentz
group by a pair (j4,7_), where jo = 0,1/2,1,3/2,2,--- are labels of irreducible representa-
tions of SU(2).

We study two specific cases.

1. (%, 0). Following the definition, we have Jj_ represented by %O’i and J! represented by
0. This implies

L'=(J,+J) =40, K'=—i(J, - J.)=—30". (3.4)
Hence a field v under this representation transforms as:
W — e 02y, (3.5)

7
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2. (3,0). In this case, J. — 0, J° — Lo’. Then
L'=(J,+J) =40, K'=—i(J, - J")= 15" (3.6)
Hence a field v under this representation transforms as:

W — e A 2y, (3.7)

We see that a field under the representation (3,0) and (0, 2) are precisely the left-handed

spinor ¥, and right-handed spinor ¥y, respectively.

(c) Let us consider the case of (3 To put the field associated with this representation

2 2)
into a familiar form, we note that a left-handed spinor can also be rewritten as row, which

transforms under the Lorentz transformation as:
Yio? — Yo ( +%9i0i+ énla’) (3.8)

Then the field under the representation (3, 1) can be written as a tensor with spinor indices:

(3.9)

VoL Ve vV —ip?
Vigiv? vo 3

¢R¢fa2 =Vte, = (
In what follows we will prove that V*# is in fact a Lorentz vector.
A quantity V* is called a Lorentz vector, if it satisfies the following transformation law:
Vi — AP VY (3.10)
where A*, = 6/ — 1w, (J*°)* in its infinitesimal form. We further note that:
(J?7) = 1(6507 — 6557). (3.11)

and also, w;; = €;10%, wo; = —wjo = 1", then the combination V*5, = Vic' + V' transforms
according to

i mn\i P _ l Onyi l n0\0 0 1
(I VI 4 (= Saion (T = S0, ) V00
_ (5;1 — it (1) (5757 — 5;"5;?)) Vie' + (= in'(—i)(—0r) VO

=Vig" — €FVigigh 4 Voot

Vio' o (3

i i ,
VO — VO + < — §WQn<J0n)0i — Ewn0<<]n0>0i> Vv

= VO (—in'(is])) Vi = VO + 'V

In total, we have
ViG, — (08 — é*0o* + ) Vi (14 1'a") VO (3.12)
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If we can reach the same conclusion by treating the combination V#&,, a matrix transforming

under the representation (2, 5) then our original statement will be proved. In fact:

2
o+ 9] [0, 07] + 77 o, O'J}>VZ (1+n'a")V°
= (o' — ”kﬁja +77)VZ (1+n'a" )V, (3.13)

1 1
Vie, — (1——9%77—1—277&)‘/“0“(1—1— —0od + naj>

as expected. Hence we proved that V# is a Lorentz vector.

3.2 The Gordon identity

In this problem we derive the Gordon identity,

a(p)yulp) = ) (L 2 )y ) (314

Let us start from the right hand side,

o) ( p/uz_; o, iauv(ggn_ pv) >u(p)
— %u(p/) ((p/” +p") +io™ (p), — py)) u(p)
1 1

= 5 —u(P) (n“”(pL o) = 5[0, — pu))u(p)
= o 1(0) (30 N0 ) — 1218, — p) )

_ iﬂ(p’) (?’7’“‘ + 7“?)“(19) = u(p" )" u(p),

2m

where we have used the commutator and anti-commutators of gamma matrices, as well as

the Dirac equation.

3.3 The spinor products

In this problem, together with the Problems 5.3 and 5.6, we will develop a formalism
that can be used to calculating scattering amplitudes involving massless fermions or vector
particles. This method can profoundly simplify the calculations, especially in the calcula-
tions of QCD. Here we will derive the basic fact that the spinor products can be treated as
the square root of the inner product of lightlike Lorentz vectors. Then, in Problem 5.3 and
5.6, this relation will be put in use in calculating the amplitudes with external spinors and
external photons, respectively.

To begin with, let k) and k}' be fixed four-vectors satisfying k2 = 0, k? = —1 and
ko - k1 = 0. With these two reference momenta, we define the following spinors:

1. Let urg be left-handed spinor with momentum k;
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2. Let upy = Fyuro;
3. For any lightlike momentum p (p* = 0), define:
()= —— 7)) = (315)
u = ———=pu u = Urg- .
L\p \/mp RO> R\P \/2]’)—1{:32) L0

(a) We show that fure = 0 and pur(p)

massless spinor with momentum kg, and u,(p),

p. This is quite straightforward,

= pugr(p) = 0 for any lightlike p. That is, ugo is a

ugr(p) are massless spinors with momentum

Fouro = Fofyuro = (29" — ") koukruro = 2ko - kyuro — Fykouro = 0, (3.16)
and, by definition,
ur(p) = L um — 0. (3.17)
) = Tt = - |

In the same way, we can show that pur(p)

(b) Now we choose ko, =
tation, we have:

(E,0,0,—E) and ky, =

= 0.

(0,1,0,0). Then in the Weyl represen-

0O 0 0 O
0 0 2F
=0 = = 0. 3.18
%OULO 28 0 0 O Uro ( )
0O 0 0 O
Thus uzg can be chosen to be (0,v2FE,0,0)7, and:
0 0 01 0
0 0O 1 0 0
= = = 3.19
= Frtro —1 0 0" | —v2E (3.19)
-1 0 00 0
Let Pu = (p07p17p27p3)7 then:
() = ——
u = — MU
W)= R
0 0 Po+Dps p1—ips
— 1 0 0 p1+1ip2 po— P3 "
- - RO
2E(po+p3) | po—p3s  —p1tipe 0 0
—p1 — P2 Po+ Pp3 0 0
—(po +ps3)
. —(p1 +ip2) (3.20)
VPo + P3 0

0



3.4. Majorana fermions

11

In the same way, we get:

0
1 0
UR(P) = ——— , 3.21
#(p) VPo +Dp3 | —p1 +1p2 (3.21)
Po +Dp3
(c) We construct explicitly the spinor product s(p, q) and t(p, q).
s(p, q) = ap(p)ur(q) = (p1 +ip2)(q0 + ¢3) — (@1 + ig2)(Po + p3) ; (3.22)
v (po + p3) (g0 + q3)
t(p, q) _ 'aL(p)UR(Q) _ ((h - ZQZ)(pO +p3) B (pl - Zp2)(qo + Q3) ) (323)
vV (po + p3) (g0 + q3)
It can be easily seen that s(p,q) = —s(q,p) and t(p,q) = (s(q,p))*.
Now we calculate the quantity |s(p, q)|*:
2 2
1s(p, g = (Pl(CZO +q3) — q1(po +p3)) + (P2(CJ0 +q3) — ¢2(po +p3))
’ (po +p3)(qo + q3)
2, 2y 90t 4qs3 9, 2y Do+ D3
=(p? + +(gd+ —2(pgn +
(p1 +p3) . (67 + 43) P (P11 + p2ge)
=2(pogo — P11 — P22 — P3q3) = 2p - q. (3.24)

Where we have used the lightlike properties p*> = ¢> = 0. Thus we see that the spinor
product can be regarded as the square root of the 4-vector dot product for lightlike vectors.

3.4 Majorana fermions

(a) We at first study a two-component massive spinor x lying in (3,

transforming according to x — UL(A)x. It satisfies the following equation of motion:

0) representation,

i5"9,x — ima*x* = 0. (3.25)

To show this equation is indeed an admissible equation, we need to justify: 1) It is relativis-
tically covariant; 2) It is consistent with the mass-shell condition (namely the Klein-Gordon
equation).

To show the condition 1) is satisfied, we note that v* is invariant under the simultaneous
transformations of its Lorentz indices and spinor indices. That is A*,U(A)y*U(A™1) = 4.
This implies

A" UR(MG" UL (A = 6+,

as can be easily seen in chiral basis. Then, the combination ¢#0, transforms as %9, —
Ur(N)a"0,UL(A™"). As a result, the first term of the equation of motion transforms as

i&“ﬁﬂx — iUR(A)Ff“@#UL(A’l)UL(A)X = UR(A) [i&“@ux} . (326)
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To show the full equation of motion is covariant, we also need to show that the second term
io?y* transforms in the same way. To see this, we note that in the infinitesimal form,

U, =1—i0'c"/2—n'c"/2, Up=1—1i0'c"/2 +n'c"/2.
Then, under an infinitesimal Lorentz transformation, x transforms as:
X — (1—ib'c/2 —n'c'/2)x, = X" — (1+i00c"/2—n'c"/2)x"
= o = 21 +i0(0%)" /2 —n'(c*)"/2)x* = (1 — 60" /2 +n'c"/2)o?X".
That is to say, o2x* is a right-handed spinor that transforms as o?y* — Ugr(A)o?x*. Thus
we see the the two terms in the equation of motion transform in the same way under the

Lorentz transformation. In other words, this equation is Lorentz covariant.

To show the condition 2) also holds, we take the complex conjugation of the equation:
—i(6*)"0,x* — ima*x = 0.
Combining this and the original equation to eliminate y*, we get
(0> +m?)x =0, (3.27)

which has the same form with the Klein-Gordon equation.

(b) Now we show that the equation of motion above for the spinor x can be derived from

the following action through the variation principle:
S = /d% {)ﬂi& SOy + %(XTOQX — XTO'2X*)] . (3.28)
Firstly, let us check that this action is real, namely S* = S. In fact,

* . im .
S :/d4x [(X*w-ax)T—T(xTazx —XTU2X)],

where the first term (xTio - 9x)T = —i(dx)igy is identical to the original kinetic term upon
integration by parts. Thus we see that S* = S.

Now we vary the action with respect to x', that gives

05
N

which is exactly the Majorana equation.

0 —ig-dx — % 202" = 0, (3.29)

(c) Let us rewrite the Dirac Lagrangian in terms of two-component spinors:

L=14(id —m)y

) 0 1 -m  1o*0 X
1 0)\igkd, —-m io“x;

= ix]16"9,x1 + ix3 0 0,x5 — im (x5 ox1 — x]ox3)
= i){{&“@uxl + ixgﬁ“auxg — im(X§02X1 — Xlazxz), (3.30)

where the equality should be understood to hold up to a total derivative term.
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(d) The familiar global U(1) symmetry of the Dirac Lagrangian 1 — €/*1) now becomes
X1 — €%, X2 — e %ys. The associated Nother current is

JE = Py = oty — X;&’“‘XQ. (3.31)
To show its divergence 0,J" vanishes, we make use of the equations of motion:

i5"0,x1 — imo?x5 = 0,
i5"0, X2 — imo?x; = 0,
i(0,x)a" —imxlo® =0,
i(0,xh)a" —imxTo® = 0.

Then we have

0u" = (0uxD)a"x1 + X17"9x1 — (97" x2 — Xho" O
= m(x50"x1 + xlo"xs — X1 0% x2 — xbo®x}) = 0. (3.32)
In a similar way, one can also show that the Nother currents associated with the global
symmetries of Majorana fields have vanishing divergence.

(e) To quantize the Majorana theory, we introduce the canonical anticommutation rela-
tion,

{Xa®), X} (¥)} = 00 (x — ),

and also expand the Majorana field x into modes. To motivate the mode expansion, we
note that the Majorana Langrangian can be obtained by replacing the spinor ys in the
Dirac Lagrangian (3.30) with x;. Then, according to our experience in Dirac theory, it can
be found that

(@) = d ‘/ZE“Z €aa0(p)e= P + (—io?)eral (p)e? ] (3.33)

Then with the canonical anticommutation relation above, we can find the anticommutators

between annihilation and creation operators:

{aa(p), aj(@)} = 640 (p — @), {aa(p), ws(@)} = {a}(p), a}(q)} = 0. (3.34)

On the other hand, the Hamiltonian of the theory can be obtained by Legendre transforming
the Lagrangian:

H= /d3 <—X L) /d3x {iXTa -V + ?(XTOjX* —xTo X)} (3.35)

Then we can also represent the Hamiltonian H in terms of modes:

" :/d?’x/ (2m)¢ di)p/;i; 2FE, Z {(5 e + 5‘?(102)%@)&)“)
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x (Vpo) (-a- U)\/q'_"<5bab(Q)€iq'x - (—ia2)§§az(Q)6_iq'x>
+ o (elab (0)e ™ + €] (10" au () )
x (vp-o)lo* (Vo) (é}f aj(q)e” > + (—ia2)gbab(q)eiq-x>

im

~ (e au(P)e™ + €llio?)al (p)e P )

x(vVpo)o 2\/Q'U<€bab( )elr* (—ng)EJaZ(Q)ein)]

- & / %313% {amuag | (7o a-ovi

im

tg <W>*02<¢q—o>< w?>—7<102><¢p~a>%wq~alsbei<pq>-x

im

+al(p)aj(@)él | — (Vpo)'(—a-o)yq-o(-i o)+ 5 (Vp-o)le’(Va-o)

+au@)a(0)€] | (02) (V5 0) (~a- )T + o (10%) (Vi o) o (VT )" (~i0?)

- [ oo S { e | (T - avie

+ V) Vo) (o) — B i0?) (Vo) o

m

FalPlal(-PIEL| - (VFT9) (- o) Vi al-i0%) + B ) (o)
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d3
-/ G 2 (B2 0+ ) [al (P)asp)ELG — (Pl (PIETE
p a,b

-/ (;@ET > [ak(P)ac(p) — au(p)ai(p)]

- [ B Y dplato) (3.36)

In the calculation above, each step goes as follows in turn: (1) Substituting the mode ex-
pansion for x into the Hamiltonian. (2) Collecting the terms into four groups, characterized
by a'a, a'a’, aa and aa’. (3) Integrating over d®z to produce a delta function, with which
one can further finish the integration over d®q. (4) Using the following relations to simplify

the spinor matrices:

(p-o)=(p-o)P=E+|p”, (po)p-o)=p"=m>, p-o=2p-—p-o).

In this step, the afa’ and aa terms vanish, while the aa’ and a'a terms remain. (5)
Using the normalization &, = J4, to eliminate spinors. (6) Using the anticommutator
{a.(p), al(p)} = 6®)(0) to further simplify the expression. In this step we have throw away
a constant term —%Epé(?’)(O) in the integrand. The minus sign of this term indicates that
the vacuum energy contributed by Majorana field is negative. With these steps done, we
find the desired result, as shown above.

3.5 Supersymmetry

(a) In this problem we briefly study the Wess-Zumino model, which may be the simplest
supersymmetric field theory in 4 dimensional spacetime. Firstly let us consider the massless
case, in which the Lagrangian is given by

L=0,¢"0"p + x'ic"9,x + F*F, (3.37)

where ¢ is a complex scalar field, x is a Weyl fermion, and F' is a complex auxiliary scalar
field. By auxiliary we mean a field with no kinetic term in the Lagrangian and thus it does
not propagate, or equivalently, it has no particle excitation. However, in the following, we
will see that it is crucial to maintain the off-shell supersymmtry of the theory.

The supersymmetry transformation in its infinitesimal form is given by:

§¢ = —iel o%y, (3.38a)
5x = eF + o"(0,0)0%", (3.38b)
§F = —ie'5"0,x, (3.38¢)

where € is a 2-component Grassmann variable. Now let us show that the Lagrangian is
invariant (up to a total divergence) under this supersymmetric transformation. This can be
checked term by term, as follows:

0(0,°0"9) = i(9ux10%€) 0" + (8,67 (— i€ %" x),
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(5()(“5“3“)() = (F*eT + el'o?0” ,,qb*)i&“@#x + xfigh (eﬁﬂF + 0”026*8u8y¢)
= iF*e'520,x + 10, [6T020”6“(8V¢*)X] —ie’0%0"5"(0,0,0")x
+ix'e*ed, F +ix'et 0" 0*¢*0,0,¢
= iF*€'6°0,x +10, [¢' 0?0 5" (9,¢") x| — i€ o?(9°¢*)x
+ iXTé“eauF + ixTo%e* 0%,
§(F*F) =i(0,x"a"eF —iF*€'a"0,x,
where we have used #09,0, = 0*. Now summing the three terms above, we get:

SL =10, |0’ 0" d + xTo"eF + ¢* " 0% (00”0, — (9“))(], (3.39)

which is indeed a total derivative.

(b) Now let us add the mass term in to the original massless Lagrangian:
AL = (moF + Limx"o”x) + c.c. (3.40)

Let us show that this mass term is also invariant under the supersymmetry transformation,

up to a total derivative:

S(AL) = —ime" o> F — imge' "9, x + im[e" F + €' (6*)T (") 9, 0]0”x
+ Limx"o*[eF + 0" (d,¢)0%e] + c.c.
1

=— LimF(e"0’x — x"o%) — imee' 50, x

— Lim(9,0)e'a"x + 2im(9,9)x" (6") e + c.c.

=— %z’mF(eTazx —xTo%e) — im@u(@?T&“)O

+ %im(@ugb) [ET(?“X + XT(6“)T€*] +c.c
= — imd,(¢e'ay) + c.c (3.41)

where we have used the following relations:
(o))T = —0?, o*(e")To? = &*, fo?y = xToe, oty = —xT(a")Te.
Now let us write down the Lagrangian with the mass term:
L =0,0"0"¢+ x'16"0,x + F*F + (m¢F + +imx"o?x + c.c.). (3.42)
Varying the Lagrangian with respect to F*, we get the corresponding equation of motion:
F =—mo". (3.43)
Substitute this algebraic equation back into the Lagrangian to eliminate the field F', we get
L=0,0"0"p—m*¢* ¢+ XTiﬁ”“@uX + % (imXTJQX + c.c.). (3.44)

Thus we see that the scalar field ¢ and the spinor field y have the same mass.
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(c) We can also include interactions into this model. Generally, we can write a Lagrangian
with nontrivial interactions containing fields ¢;, x; and F; (i =1,--- ,n), as

N oWl | i PWle|
L =0,0;0"p; + x;i0"0,x; + F F; + {F’ o, T 2 0¢;00;

Xj oy + c.c.|, (3.45)

where W[¢] is an arbitrary function of ¢;.
To see this Lagrangian is supersymmetry invariant, we only need to check the interactions
terms in the square bracket:

oWlgl | i W o,
F‘ a ; ] O,
5|: t a(bl +2 a¢za¢j XZUX]+CC
:_-T*/L . F _'T2 ' _—_'T2 T? '
ie' 0" (0xi) 00 + l&bi@@( e ox;) + 26@-8@0@( i€’ o xk)X; 07X
i 0°W T Y 2NT [ pn\T 2 T 2 " 2 %
+§0¢i5¢j[(6 Fi+ €' (0?)"(6") 0,:)0°x; + x; 0° (eF; + 0" 0,pj0°¢ )] +ecc.

The term proportional to 9*W/d¢* vanishes. To see this, we note that the partial derivatives
with respect to ¢; are commutable, hence 9*W/0¢;0¢;0¢;. is totally symmetric on i, j, k.

However, we also have the following identity:

("o xk) (X! o) + (€0 xa) (X] o”xk) + (€70 x;) (xf o?xi) = 0, (3.46)

which can be directly checked by brute force. Then it can be easily seen that the 93W/0¢?
term vanishes indeed. On the other hand, the terms containing F' also sum to zero, which

is also straightforward to justify. Hence the terms left now are

o ow  PW
160 00) 5+ i5556,¢ () (") (007K
T 7 J
oW 0*W O*W
— =0y, set=py, 7 " R =Y Ny -
18/1(6 0" Xi a¢z ) +1€'0 Xza¢ia¢ja#¢] la¢ia¢j€ o (aﬂ(bl)X]
— 9, (e*a—”xi g?bv» ) (3.47)

which is a total derivative. Thus we conclude that the Lagrangian (3.45) is supersymmetri-
cally invariant up to a total derivative.

Let us end up with a explicit example, in which we choose n = 1 and W{¢| = g¢?/3.
Then the Lagrangian (3.45) becomes

L =0,6"0"¢+ x'icho,x + F*F + <9F¢2 +ipxToy + c.c.). (3.48)
We can eliminate F' by solving it from its field equation,
F+g(¢*)?=0. (3.49)
Substituting this back into the Lagrangian, we get
L =0,0"0"¢ + x"id"9x — 6*(6"9)" +ig(ex" o*x — ¢*x'a*x"). (3.50)

This is a Lagrangian of massless complex scalar and a Weyl spinor, with ¢* and Yukawa
interactions. The field equations can be easily got by the variation.
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3.6 Fierz transformations

In this problem, we derive the generalized Fierz transformation, with which one can
express (I uy)(tsT'Puy) as a linear combination of (1) (iisT'Puy), where ' is any
normalized Dirac matrices from the following set:

{ 1,9, 0" = $[*,7"],7°9", 7" = —iv°y1y%° |
(a) The Dirac matrices I'* are normalized according to
tr (TAT5) = 4645, (3.51)

For instance, the unit element 1 is already normalized, since tr (1-1) = 4. For Dirac matrices
containing one y*, we calculate the trace in Weyl representation without loss of generality.

0 o
n—

gives tr (y#y*) = 2tr (o#6*) (no sum on ). For g =0, we have tr (799°) = 2tr (1ax2) = 4,

Then the representation of

and for u =1 =1,2,3, we have tr(y'y") = —2tr (¢'c") = —21tr (12x2) = —4 (no sum on 7).
Thus the normalized gamma matrices are v and i7"
In the same way, we can work out the rest of the normalized Dirac matrices, as:

tr (6%0") = —2tr (o'c") = —4, (no sum on 1)
tr (070) = 2tr (c¥o") = 4, (no sum on 1, j, k)
tr(v°7°) = 4,
tr(7°%9%9°) = —4, tr(7°9'9%") = 4.
Thus the 16 normalized elements are:
{1, 9% iy, i0%, 0, 4%, iv°?°, ¥°y . (3.52)

(b) Now we derive the desired Fierz identity, which can be written as:
(@ T up) (usTPug) =~ C4Pep (T ug) (5T P ). (3.53)
c,D

Left-multiplying the equality by (uI'Fus) (0P uy), we get:
(oD ug) (gD Py ) (1 T ) (3T Py Z C4Bop tr (DETO) tr (D). (3.54)

The left hand side:
(ﬂgFFu3)(ﬂ4FEu1)(€L1FAu2)(ﬁ3FBu4) = ’&4FEFAFFFBU4 = tr (FEFAFFFB),
the right hand side:

Z CAPop tr (TFTC) tr (TFTP) = Y~ C4P0pas™C46"P = 16047
C,D

thus we Conclude:
C4Bop = L tr (DOTATPTP). (3.55)
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(c) Now we derive two Fierz identities as particular cases of the results above. The first

one is:

r 1D
(ﬂ1U2)(a3U4) = Z #GI‘)(U1FCU4>(U3FDUQ). (356)
C,.D

The traces on the right hand side do not vanish only when C' = D, thus we get:

(i up) (Tgug) =Y T (1T us) (5T Cun)
C

= % [@11@4)(@3“2) + (U ug) (Uzy,u2) + %(MUWM)(@:;UWW)
— (" ua) (s yuuz) + (017 ua) (U7 us) |- (3.57)
The second example is:

tr (FC'y“FD%)
16

(w vy ug) (usy,us) = (1T uy) (3T Pup). (3.58)

C,D

Again, the traces vanish if [¢y# # C' o I'Py#* with C' a commuting number, which implies
that ['¢ = I'P. That is,
tr (T94*T%,)

(1" us) (T yutia) = Y T (T ug) (13T )
C

= & [ 4(Eua) () — 277" ) (@7,2)
— 2(1y " ua) (s ypu2) — 4(1117%4)(@375“2)]- (3.59)

We note that the normalization of Dirac matrices has been properly taken into account by

raising or lowering of Lorentz indices.

3.7 The discrete symmetries P, C and T

(a) In this problem, we will work out the C, P and T transformations of the bilinear
Yo, with o = Liy# 4], Firstly,

Py(t,x)a"(t,x) P = 5(t, —x)7"[7*, 7" ]V ¥ (t, —x).
With the relations 7°[1%,7]7° = =[7%,7'] and 7°[y*,77]7° = [1*, 7], we get:

_ { - @E(tv _X)00i¢<t’ _X);

Bt ) (1 ). .

Py(t,x)o"p(t,x)P

Secondly,

T(t, )" (t, x)T = —5(—t, x) (=7 ) V", v T (v ) (=, %),
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Note that gamma matrices keep invariant under transposition, except 42, which changes the
sign. Thus we have:

_ o .
Tt x)o™p(t, x)T = { w_(;i:);f(j;i_xzx) (3.61)
Thirdly,
CY(t, x)a"h(t,x)C = =3 (=) o™ (=i ") = 722 (0") 7720
Note that 4% and ¥? are symmetric while v* and 73 are antisymmetric, we have
Ot )™ (8, X)C = —(t, XM (1, %) (3.62)

(b) Now we work out the C', P and T transformation properties of a scalar field ¢. Our

starting point is
Pa,P = a_p, TapxT = a_p, CapC = by

Then, for a complex scalar field

d3k 1 —ik-x 1 ik-x
o) = / 5 T [ake +ble ] (3.63)
we have
k1 7 —i(kOt—k-x t o i(kOt—kex
Po(t,x)P = / N s ( )b el >] = o(t, —x). (3.64a)
To(t,x)T = / L P = Iy e—i<"~‘°t—k*>] = $(—t,x%). (3.64b)
| o Vi | - /
Co(t, x)C :/ Bk 1 -bke—i(kﬂtfk-x) Ll ei(kot—k-x)] — ¢*(1,x). (3.64¢)
’ (2m)3 \/2k0 L k ’

As a consequence, we can deduce the C, P, and T transformation properties of the current

JH = i((b*(“)“gb — (8“¢*)¢), as follows:

(_ )S(H)i[gb* (tv —X)a‘ugb(t, _X> - (aﬂqs* (tv _X))d)(t? _X)}
(—1)*W) g (t, —x), (3.65a)

where s(u) is the label for space-time indices that equals to 0 when p = 0 and 1 when

PJ*(t,x)P

—_

—_

u=1,2,3. In the similar way, we have

TJt,x)T = (—1)*W JH(—t,x); (3.65b)
CJH(t,x)C = —JH(t,x). (3.65¢)

One should be careful when playing with 7" — it is antihermitian rather than hermitian,
and anticommutes, rather than commutes, with /—1.
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(c) Any Lorentz-scalar hermitian local operator O(z) constructed from ¢ (z) and ¢(x)
can be decomposed into groups, each of which is a Lorentz-tensor hermitian operator and
contains either 1(x) or ¢(z) only. Thus to prove that O(x) is an operator of CPT = +1, it
is enough to show that all Lorentz-tensor hermitian operators constructed from either ¢ (z)
or ¢(z) have correct CPT value. For operators constructed from ¢ (x), this has been done
as listed in Table on Page 71 of Peskin & Schroeder; and for operators constructed from
¢(z), we note that all such operators can be decomposed further into a product (including
Lorentz inner product) of operators of the form

(Opuy - 'aum¢T)(au1 O, ®) +ec

together with the metric tensor n*¥. But it is easy to show that any operator of this form
has the correct C'PT value, namely, has the same C'PT value as a Lorentz tensor of rank

(m+n). Therefore we conclude that any Lorentz-scalar hermitian local operator constructed
from ¢ and ¢ has CPT = +1.

3.8 Bound states

(a) A positronium bound state with orbital angular momentum L and total spin S can
be build by linear superposition of an electron state and a positron state, with the spatial

wave function Wy (k) as the amplitude. Symbolically we have

|L,S) ~ Z\I/L f(k, s)bf (—k, 5')]0).

Then, apply the space-inversion operator P, we get

PIL,S) =Y W (—k)namal (~k, s)b'(k, s)[0) = namz U (k)af(k, $)bf (k, 5)[0).
K
(3.66)
Note that 7, = —n;, we conclude that P|L,S) = (—)!*|L, S). Similarly,

CIL,S) =) W (k)b (k, s)al(—k, s')[0) = L+SquL k, s")al(k, s)[0). (3.67)

That is, C|L,S) = (=1)Y*9|L, S). Then its easy to find the P and C eigenvalues of various
states, listed as follows:

SL 15 SS 1P SP 1D 3D
Pl- - 4+ + - -
cCl+ - - + + -

(b) We know that a photon has parity eigenvalue —1 and C-eigenvalue —1. Thus we see
that the decay into 2 photons are allowed for 1S state but forbidden for 35 state due to
C-violation. That is, S has to decay into at least 3 photons.
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Chapter 4

Interacting Fields and Feynman
Diagrams

4.1 Scalar field with a classical source

In this problem we consider the theory with the following Hamiltonian:

=t~ [ @(t.x0(a) (4.1)

where Hj is the Hamiltonian for free Klein-Gordon field ¢, and j is a classical source.

(a) We calculate the probability that the source creates no particles. The corresponding
amplitude is given by the inner product between the in-state and the out-state, both of

which are vacuum in our case. Therefore,

P(O) :’out <0’0>1n

:‘(O|Texp{ —i/d4$Hint}’O>

= Jim [0l o)
‘2 = |0/ exp {i/d4xj(x)¢,(x)}|o>f. (4.2)
(b) Now we expand this probability P(0) to j2. The amplitude reads,

o esp (i [ dte oo }i0) =1 - 5 [ atedty@OTai@on)050) + 00"

:1—%/d4xd4yj($)j(y)/ (gﬂ_};?)i‘l—O(jﬂ

1=y [ i+ o (4.3
Thus the probability is given by,
P(0) = |1—%)\+O(j4)|2: 1—A+0(%), (4.4)
where @y 1 -
v= [ s iR (1.5

23
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(c) We can calculate the probability P(0) exactly, by working out the j** term of the

expansion as,

o [ e o) ) 70w ()]
_ ) (2n — 1)5;2)'— 3) ---3-1 /d4l‘1 . 'd4$2nj(l'1) . ](xgn)
/ By - - Bp, 1 JiP1-(x1=x2) . b (Xan1-xan)
(2m)3n 2"Ey, - Ep,
(=1)" Ep G\ _ (=A/2)
~ onp) (/ (2m)3 2E, ) T (4.6)
Then,
)= (3 —(_2/!2) )2 — e (4.7)

(d) Now we calculate the probability that the source creates one particle with momentum
k, which is given by,

P(k) = [T exp {i [ ate j(o)ona) o) (4.8)
Expanding the amplitude to the first order in 7, we get:
PO =|0)+ [ e o) [ 5o+ 00|
i [ 55 5 VI n)s(p 10| = IRP+ 06, (49)
If we go on to work out all the terms, we get,
)= Z CnrDen £ Den =18 Linws gy ipe 5. (@10

(2n 4+ 1)!

(e) To calculate the probability that the source creates n particles, we write down the
relevant amplitude,

/ (ZW)iSkIQ;;Ef%TL, i (ky -+ k,|T exp {z / d*z j(z)or(x )}\O) (4.11)

Expanding this amplitude in terms of j, we find that the first nonvanishing term is the one
of n’th order in j. Repeat the similar calculations above, we can find that the amplitude is:

" d3ky - - - B3k, .
—|/2 7 d'zy o d'mn g1 (ke K| $,]0) + O )

( 7r)3”\/2"Ek1---Ek
n By - - A3k, " " 17(p)I?
. 4.12
(2m)3n\/2"Ey, - - Z Z”n' </ (2m)3 2E, ) (4.12)

i
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Then we see the probability is given by,

P(n)=—e™", (4.13)

which is a Poisson distribution.

(f) It’s easy to check that the Poisson distribution P(n) satisfies the following identities:

> P(n)=1. (4.14)

= Z nP(n) = \. (4.15)

The first one is almost trivial, and the second one can be obtained by acting /\ 5 to both
sides of the first identity. If we apply A& o again to the second identity, we get:

(N = (N))?) = (N?) = (N)* = \. (4.16)

4.2 Decay of a scalar particle

This problem is based on the following Lagrangian,

%M%? + %@(b)z - %m2¢2 — u®gg. (4.17)

When M > 2m, a ® particle can decay into two ¢ particles. We want to calculate the

L— %@@)2 -

lifetime of the ® particle to lowest order in .
The two-body decay rate is given in (4.86) of P&S,

3 3
J 4= 57 | et g MU0 = 60 )5 (e = ). (419

To lowest order in p, the amplitude M is given by,

M = —2ipu. (4.19)
The delta function in our case reads,
0 (pa —p1 = p2) = 6(M — Ep, — Ep,)8% (p1 + p2), (4.20)
thus,
122 d?p1d®p, 1 4
N=—. 21)40(M — Ep, — Ep,)0® 4.21
2 M (2m)6  4E, E,, (2m)"o( p1 p2)0"” (P1 + P2), ( )

where an additional factor of 1/2 takes account of two identical ¢’s in final state. Further-

more, there are two mass-shell constraints,

m?+p; = E2 . (i=1,2) (4.22)
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Hence,

d3p; u? 4m? \ 1/2
§(M —2F =—(1— ) . 4923
M / 27r34E2 2m)a( pi) 8t M M? ( )

Then the lifetime 7 of @ is,

(4.24)

4.3 Linear sigma model
In this problem, we study the linear sigma model described by the following Lagrangian,
L=210,00'" — Im*0'd" — LA(D'D)%. (4.25)
Where @ is an N-component scalar.

(a) We firstly compute the differential cross sections to the leading order in A for the
following three processes,

Plp? — d'P?, PO - P29, PO - DL (4.26)

Since the masses of all incoming and outgoing particles are identical, the cross section is
simply given by

do M P
(d_Q>  64n2s’
where s is the square of center-of-mass energy, and M is the scattering amplitude. From

(4.27)

the Feynman rules it’s easy to get,

M(®'d* — 0'0?) = M(D'P! — 20?) = —2i),
M(®'P! — d'o') = —6iN. (4.28)

It follows immediately that

)\2
o(®'d? = 'P?) = oM (D't — P2P?) =
1672s’
o(®'e! — o'l = X (4.29)
1672s )

(b) Now we study the symmetry broken case, that is, m? = —u? < 0. Then, the scalar
multiplet ® can be parameterized as

d= (a7 o+ 0)T, (4.30)

where v is the VEV of |®|, and equals to 1/ u?/\ at tree level.
Substitute this into the Lagrangian, we get

L= %(auﬂk)Q + %((’%0)2 - %(QMQ)UQ — \/X/wg — \/X,umrkwk
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— 20" — 2% (n" ") — 2 (nt7*)?. (4.31)

Then it’s easy to read the Feynman rules from this expression:

k i
k 6%
_______ = (4.32b)
/\ = 6i\v; (4.32¢)
\ = —2i\vdY; (4.32d)
z’// N
= —6i\; (4.32¢)
\,\/ = — 2i\6Y; (4.32f)
ir” ]
(N , J
< = 2AN(§YGH 4 I 4 55, (4.32¢)
124 Sk
(c) With the Feynman rules derived in (b), we can compute the amplitude
M [Wi(pl)ﬂj(]h) — 7Tk(p3)7T£(p4)}>
as:
— (—9i\0)2 [ 1 S5 gkt 1 ik gt i 5i£5jk]
M = (=2ix) s — 2u? +t—2,u2 +u—2,u2
— 20N(0Y R 4 g I 5iSTR, (4.33)

where s,t,u are Mandelstam variables (See Section 5.4 of P&S). Then, at the threshold
p; =0, we have s =t = u = 0, and M vanishes.

On the other hand, if N = 2, then there is only one component in 7, thus the amplitude
reduces to

2 2 2
M=— m[ 24 2 2

3
5—2,u2+t—2,u2+u—2,u2+
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o [SsTlHu 4
=2\ o+ O )]. (4.34)

In the second line we perform the Taylor expansion on s, and u, which are of order O(p?).

Note that s + ¢ +u = 4m?2 = 0, thus we see that O(p?) terms are also canceled out.

(d) We minimize the potential with a small symmetry breaking term:
V= -0 + 2(9'0")? — ad”, (4.35)
which yields the following equation that determines the VEV:
(= 1° + A0'D") D" = ad™. (4.36)
Thus, up to linear order in a, the VEV (&%) = (0,---,0,v) is

2
i a

=1\ —+ —. 4.37

v \ + 2 ( )

Now we repeat the derivation in (b) with this new VEV, and write the Lagrangian in terms

of new field variable ¢ and o, as

2

— Mo® — dvorhrh — Laot — 207 (nFnk) — & (nha*)2 (4.38)

L= %(8M7Tk)2 + %(@0)2 — i@ﬁkwk — %(2;12)02

The 7ird — 7F7* amplitude is still given by

1 g i oo i o
M — (—=92i\ 2 —5135143[ —5zk53Z —51Z53k]
(=2iw) s — 2u? +t—2,u2 +u—2,u2

— 2N (69 M 4 g I 4 57 5TF). (4.39)

However this amplitude does not vanish at the threshold. Since the vertices Av # VA
exactly even at tree level, and also s, t and u are not exactly zero in this case due to nonzero
mass of /. Both deviations are proportional to a, thus we conclude that the amplitude M
is also proportional to a.

4.4 Rutherford scattering

The Rutherford scattering is the scattering of an election by the coulomb field of a
nucleus. In this problem, we calculate the cross section by treating the electromagnetic field
as fixed classical background given by potential A, (). Then the interaction Hamiltonian
is,

H; = / Pz ey A,. (4.40)
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(a) We first calculate the T-matrix to lowest order,
out (' [P)in = (/| T exp(—i / d*x Hy)|p) = (p'|p) — ie / d*a A (2) (0 [vy"¢Ip) + O(e?)
=(p'|p) — ie / d'z A (2)a(p ) ulp)e’™ " + O(e?)

=(27)*6W(p — p') — ieu(p' )" u(p) Au(p' — p) + O(€?). (4.41)

On the other hand,
out (P'[P)in = (P'|S|p) = &'p) + (P'|iT|p). (4.42)

Thus to the first order of e, we get,
(p'|iT|p) = —ieﬂ(p/)y“u(p)[l#(p’ — D). (4.43)

(b) Now we calculate the cross section do in terms of the matrix elements i M.
The incident wave packet |¢) is defined to be:

d3k‘ e—z‘b-k
) = | G Tt e, (1.44)

where b is the impact parameter.

The probability that a scattered electron will be found within an infinitesimal element
d3p centered at p is,

_dPp 1 2
P _(QW)SE 0ut<p|¢>in
Cdp 1 dBkd3k’ . | N\ i i)
- (2m)P2E, / Grabah, Y () (o (P} (e (Bl ) €
. d3p 1 dgkdgk, % ’ . . ’ * —ib-(k—k/)
~ Gy IE, / s V10U B (BT ) ((PITIK) ) e (445)

In the last equality we throw away the trivial scattering part from the S-matrix. Note that,
WIiTIp) = M) By — Byp), (4.46)

so we have,

Bp 1 / Brd

w(k)w*(k/)]iMP(QW)%(Ep — Ex)o(Ep — Ek,>67ib-(k—k’).

(2m)32E, ) (27m)y/2FE\2Ey
(4.47)
The cross section do is given by:
do — / a2 P(b), (4.48)

thus the integration over b gives a delta function:

/ A2p e ™) — (27)25 (k, — K)). (4.49)
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The other two delta functions in the integrand can be modified as follows,
Ex 1
§(Ex — Bw) = k—”5(kn — k) = 0k — Ky, (4.50)

where we have used |v| = v = v|. Taking all these delta functions into account, we get,

do = (;r];?’ 22}, / (2733]; B %w(kw*(k)ﬁMF(%)f?(Ep — Ex). (4.51)

Since the momentum of the wave packet should be localized around its central value, we
can pull out the quantities involving energy FEj outside the integral,

dPp 1 1 1 ) Bk )
Recall the normalization of the wave packet,
d3k
——(k)* (k) =1 4
| G0 =1, (453
then,
d3 1 1 1
do = o5 LMk = pP2m)5(E, - By). (454)

(27)3 2E, 2Fy v

We can further integrate over |p| to get the differential cross section do /dS2,

dpp® 1
0m§(E. — E
dQ /27?32E 2Ekv|M(k%p>’(ﬂ)5(p )

B dpp® 1 ll Ey
- [ g gy MO = PR s — b

1
= k,0)]>. 4.55
(471')2 |M( ) )| ( )
In the last line we work out the integral by virtue of delta function, which constrains the
outgoing momentum |p| = |k| but leave the angle 6 between p and k arbitrary. Thus the
amplitude M(k, 0) is a function of momentum |k| and angle 6.

(c) We work directly for the relativistic case. Firstly the Coulomb potential A’ = Ze/47r

in momentum space is

Ze
Aq) = —. (4.56)
Gl
This can be easily worked out by Fourier transformation, with a “regulator” e™" inserted:
. Ze Ze
AY = [ PrePXe ™ = : 4.57
(q,m) / xe e Q2 - m? (4.57)

This is simply Yukawa potential, and Coulomb potential is a limiting case when m — 0.
The amplitude is given by

iM(k,0) = ieu(p)y" A (a)u(p) withq=p — k. (4.58)
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Then we have the squared amplitude with initial spin averaged and final spin summed (See
§5.1 of P&S for details), as,

LY Mk, 0)]? =2 Au (@A (a) D a(p)y ulk)u(k)y u(p)

spin spin
=1e? A (@) A, (q) tr [Y*(p+ m)y” (k+m)]
=2¢*[2(p - A)(k - A) + (m* — (k- p)) A%]. (4.59)
Note that
~ Ze Ze
A(q) = — 4.60
D= o=k P/ o
th
) L M, 0))F = 21— vsin 5) (4.61)
2 T i (0/2) ‘
and
do _ Z%a*(1—v?sin® £) (462)
dQ 4]k|2v2 sin*(0/2) '
. In non-relativistic case, this formula reduces to
2.2
do Z (4.63)

AQ  dmet sin*(0/2)



32

Chapter 4. Interacting Fields and Feynman Diagrams




Chapter 5

Elementary Processes of Quantum
Electrodynamics

5.1 Coulomb scattering

In this problem we continue our study of the Coulomb scattering in Problem 4.4. Here
we consider the relativistic case. Let’s first recall some main points considered before. The
Coulomb potential A° = Ze/4nr in momentum space is

A%(q) = li—;. (5.1)
Then the scattering amplitude is given by
iM(k,0) = ietu(p)y* Au(@)u(p)  withq=p—k. (5.2)
Then we can derive the squared amplitude with initial spin averaged and final spin summed,
as:
=S MO = 5 e A A ) 3 Al ulkyahyu(p)
spin spin
= LA Aa)tr [+ myy ()]
— 2¢? {2@ LAY (k- A) + (m? = (k -p));ﬂ. (5.3)
Note that i Ze Ze
Al = p—k[>  4k[2sin®(0/2)’ (54)
the 1 , 2% (1—v?sin® %)
2 ; LMk O = 4|k|40? sin4(9/2§ ’ (5:5)
Now, from the result of Problem 4.4(b), we know that
2 2(1 _ 22ain2 8
j_?z - (471r)2 <% b |M(’“’9)|2) - Z4Tk|(222 55148(1911/2)2 S (5.6)

spin

33
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This is the formula for relativistic electron scatted by Coulomb potential, and is called Mott
formula.
Now we give an alternative derivation of the Mott formula, by considering the cross

—Z

section of e~p=% — e~ p~?. When the mass of j goes to infinity and the charge of y is

taken to be Ze, this cross section will reduces to Mott formula.

_ —-Z
e 2
\ D1 D2 /‘

ke ky N
e M’Z

Figure 5.1:  The scattering of an electron by a charged heavy particle p=2. All initial

momenta go inward and all final momenta go outward.

The corresponding Feynman diagram is shown in Figure 5.1, which reads,
. . N2 —i -
IM = Z(—le)Qu(pl)fy“u(/{;l)TU(pQ)’}/uU<k2), (57)

where u is the spinor for electron and U is the spinor for muon, ¢t = (k; — p;)? is one of three
Mandelstam variables. Then the squared amplitude with initial spin averaged and final spin

summed is

T IMP =

spin

= [k, + ), m)] o b + M), + )]

Z24
_ pﬁ 2M% — 8M?(ky - py) + 8(ky - p2) (2 - p1)

t2
— 8m? (ks - p2) + 8k - ka) (b1 - p2)|. (5.8)

Note that the cross section is given by

do _ 1 Joit
<E>CM " 2B.2E,|vk, — Uk, | (27)24Eoy ( > IM] ) (59)

When the mass of 1 goes to infinity, we have E, ~ Ecy ~ M, vy, ~ 0, and |p1| =~ |kq|.

Then the expression above can be simplified to

<((ii_g>CM ~ 16(27) 2M2< >_IMP > (5.10)

When M — oo, only terms proportional to M? are relevant in |[M|?. To evaluate this

squared amplitude further, we assign each momentum a specific value in CM frame,

k= (E,0,0,k), p1 =~ (E,sind,0, kcos @),
ky ~ (M,0,0,—k), pe >~ (M, —ksin6,0, —k cos0), (5.11)
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then t = (k1 — p1)? = 4k?sin® £, and,

2264(1 — v2%sin? —9)
. 2 2
_}1 E iMJ? = E 23 2= M? + O(M). (5.12)

Substituting this into the cross section, and sending M — oo, we reach the Mott formula

again,
do Z%ﬂ(l—zﬂsinz %)
dQ  4]k|2?sin®(6/2)

(5.13)

5.2 Bhabha scattering

The Bhabha scattering is the process ete™ — ete™. At the tree level, it consists of two
diagrams, as shown in Figure 5.2.
e et
e et
P1 § o) 4 P2

AN Bk

e et
e et
Figure 5.2: Bhabha scattering at tree level. All initial momenta go inward and all final

momenta go outward.

The minus sign before the t-channel diagram comes from the exchange of two fermion field
operators when contracting with in and out states. In fact, the s- and t-channel diagrams
correspond to the following two ways of contraction, respectively,

] 1 — |
<Illp2’¢14¢¢44¢’k1k2>a <P1p2|¢A¢¢A¢|k1k2>- (5-14)

In the high energy limit, we can omit the mass of electrons, then the amplitude for the

whole scattering process is,
M = (=) [0y ulhy)— o) (p2) — o)y ulkn) o)) |, (515)
where we have used the Mandelstam variables s, ¢ and u. They are defined as,
s=(ki+ky)? t=(p—k)? u=(po—Fk)* (5.16)
In the massless case, k¥ = k5 = p? = p5 = 0, thus we have,
s =2k ko =2p1-pa, t=-2p1-k1=-2py-ky, u=-2py-kr=-2p ko (517)

We want to get the unpolarized cross section, thus we must average the ingoing spins and
sum over outgoing spins. That is,

1 , ¢
T MP=15)0

spin

0 (k)" u(ky)t(p1)yuv(p2) 2
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et 2

T e 2. ‘ﬂ(pl)v“U(kl)@(’@)%“(p?)

64

- dst
4

= % tr (F" k27" o (P, W) + % tr (B 7" p ")t (B, vk )

et V
 4st [tr (Eoy" Koy oy ") + c.c.]
2et(u? + %) 2et(uP+ %) detu?

(0270 (k) ()7 wkn o ko) 0 (p2) + cec.

52 12 st
12 52 1 1\2
) 2(— —) . 5.18
e[82+t2+u Sty (5.18)
In the center-of-mass frame, we have kY = kJ = k°, and k; = —ky, thus the total energy

EZy = (k) + k9)? = 4k* = 5. According to the formula for the cross section in the four

identical particles’ case (Eq.4.85):

do 1 " 9
— S — 5.19
(dQ)CM 647T2ECM(4Z’M‘ )7 ( )
thus
do a? [ 52 o1 12
- =— |-+ — 4+ — 5.20
(dQ)CM 25 L’z—i_tQ +u<s+t)]’ (520)
where o = €2 /47 is the fine structure constant. We integrate this over the angle ¢ to get:
do ma? [2 P o/ 1 12
= — + - —+ =) . 5.21
(dcos@)cwl s [32+t2 +u<s+t>} (5-21)

5.3 The spinor products (2)

In this problem we continue our study of spinor product method in last chapter. The

formulae needed in the following are:

1 1
= — = . 5.22
UL(p) \/MPURO’ UR(p) \/m?u[ﬂ ( )
s(p1,p2) = ur(p1)uL(ps2), t(p1, p2) = ur(p1)ur(p2)- (5.23)
For detailed explanation for these relations, see Problem 3.3.
(a) Firstly, we prove the following relation,
|8(p1,p2)|2 = 2p1 - pa. (5.24)
We make use of the another two relations,
_ 1 —7P _149P
UroUro = 27 %07 UROURO 27 %o’ (5.25)
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which are direct consequences of the familiar spin-sum formula > ugiiy = F,. We now
generalize this to,

_ 1—7° _ 1+~°
ur(®)in(p) = —5 ¢, un(p)in(p) = —5—p. (5.26)
We prove the first one:
1 1 149
ur(p)ur(p) “9- kOZﬁURoURO,’;ﬁ =9 kolﬁ 5 Kop
1 1-7° 1 1-47°
— - = — 2 * k -
% ko 5 pkop % - ko 5 ( P ko]ﬁ)p
1—7° L 1= 5 17
2 ke 2 P >/ (5.27)

The last equality holds because p is lightlike. Then we get,
|s(p1, p2)|* =|tur(pr)ur(p)]* = tr (uL(pz)ﬂL(pz)uR(pl)ﬁR(pl))

:% tr ((1 - 75)1?2(1 - ’75)%) = 2p1 - pa- (5.28)

(b) Now we prove the relation,

tr (,yll‘lfylla e /y”‘n) = tI‘ (’YM" . e 7“27M1)7 (529)

where p; =0,1,2,3,5.
To make things easier, let us perform the proof in Weyl representation, without loss of
generality. Then it’s easy to check that

{v“, p=0,2,5

Yt =
) -, p=13.

(5.30)

Then, we define M = '+, and it can be easily shown that M ~1y*M = ()T and MM =
1. Then we have,

tr (7M1,}/u2 .. _V,un) = 1tr (Mfl,ymMMfl,Y,uzM .. Mﬁlfy”"M)
= tr [(y)"(y*)" - ()] = e [T
= tr(y"" -y, (5.31)

With this formula in hand, we can derive the equality,
ur(p1)y*ur(p2) = ur(p2)y ur(pr), (5.32)

as follows,

LHS = Ctugop, v"'p,uro = C tr (p,7"p,)
= (C'tr (pQ’y"pl) = C’ﬂLopzy“pluLo = RHS,

in which C' = (2\/(p1 ko) (p2 - ko))_l.




38

Chapter 5. Elementary Processes of Quantum Electrodynamics

(c) The way of proving the Fierz identity

i (p1)Y" ur(p2) Ve = 2[ur(p2)un(pr) + ur(pr)ur(p:)],, (5.33)

has been indicated in P&S. The right hand side of this identity, as a Dirac matrix, which we
denoted by M, can be written as a linear combination of 16 I' matrices listed in Problem
3.6. In addition, it is easy to check directly that v*M = —M~°. Thus M must have the

form . .
1—7 I+~
M = ( 5 )’y#V“ + ( )’qu“.

Each of the coefficients V# and W* can be determined by projecting out the other one with

the aid of trace technology, that is,

VH = %tr [’y“( ! _27 )M} = ur(p1)Y ur(p2), (5.34)
Wh = %tr [’y“( ! —;7 >M] = ur(p2)y"ur(p1) = ur(p1)y"ur(p2). (5.35)

The last equality follows from (5.32). Substituting V# and W* back, we finally get the left
hand side of the Fierz identity, which completes the proof.

(d) The amplitude for the process at leading order in « is given by,

—1

iM = (—162)1_LR<]€2)’)/#UR<I{31)?@R(pl)’}/“UR(pg). (5.36)

To make use of the Fierz identity, we multiply (5.33), with the momenta variables changed
to p1 — k1 and py — ka, by [0g(p1)], and [vr(p2)],, and also take account of (5.32), which

leads to,
ur(k2)v"ur (k1) vR(p1)7.vR(p2)
= 2[@R(pl)uL(kQ)ﬁL(lﬁ)’UR(pz) =+ 77R<p1)UR(k1)ﬂR(kz)UR(pQ)}
= 2$(p17 k?)t(klaPQ)' (537)
Then,
_ 4et 16e*
iM]? = —= 151, ko) [P [t(kr, po)[* = 2 (P k)(krp2) = e'(1 4 cos ), (5.38)
and 1 M2 )
o _ _ i «
m(eze}z = pipg) = I E L 4Ecm(1 + cos 6)%. (5.39)

It is straightforward to work out the differential cross section for other polarized processes
in similar ways. For instance,

do , et (pr, k1) ?]s(ks, p2)|? o

m(eLe;% — phuL) = YT T (1 —cosf)>. (5.40)
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(e) Now we recalculate the Bhabha scattering studied in Problem 5.2, by evaluating all
the polarized amplitudes. For instance,

iM(efer — efer)
= (-0 (k) "un (k) S () o)

_ aR(pl)v“uR(kl)_Ti@R(k2>7uUR(p2)]

_ 2162 5(p17k2)t(k17p2> o S(k27p1)t(k17p2) (5 41)
S t ' ‘
Similarly,
i/\/l(eJLrel_% — eEeZ) = 2ie? Hp, kr)s(ka, p2) , (5.42)
s
lM(ef—;eZ — 62-61—2) _ 2162 S(pla kl)t(k27p2) ’ (543)
S
. _ _ o[ t(p1, ka)s(ki,p2)  t(ka, p1)s(ki, p2)

+ + — 9je? — 44
iM(efe, — eper) = 2ie . ; : (5.44)
iM(efer — eher) = 2ie? k2, kl):(p LP2) (5.45)

ko, k1)t
M(eber — eper) = 2ie? S 1)t (P1.p2) (5.46)

Squaring the amplitudes and including the kinematic factors, we find the polarized differ-

ential cross sections as,

do _ _ do _ _ a’u? /1 1\2

E(@I@a — ejep) = E(GJ}E% — eper) = 99 <; + ?) ; (5.47)
do _ _ do _ _ a? t?

E(ef% — efer) = E(GE% — epeg) = 5e 52 (5.48)
do _ _ do _ _ a? s?

d—Q(eJlgeR — efen) = d—Q(eJLreL —efer) = Se 7 (5.49)

Therefore we recover the result obtained in Problem 5.2,
do . L . [P & L1 1\2

5.4 Positronium lifetimes

In this problem we study the decay of positronium (Ps) in its S and P states. To
begin with, we recall the formalism developed for bound states with nonrelativistic quantum
mechanics in P&S. The positronium state |Ps), as a bound state of an electron-positron pair,
can be represented in terms of electron and positron’s state vectors, as,

Po) = VT [ 00— ()l (k). (53D
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where m is the electron’s mass, Mp is the mass of the positronium, which can be taken to be
2m as a good approximation, a and b are spin labels, the coefficient C,;, depends on the spin
configuration of |Ps), and ¢ (k) is the momentum space wave function for the positronium

in nonrelativistic quantum mechanics. In real space, we have,

Y100(7 \/ eXP —am,r) (5.52)
Po1i(r) = 1/ (amr/2 ~— gt exp(—am,r/2). (5.53)

where m, = m/2 is the reduced mass. Then the amplitude of the decay process Ps — 2y

can be represented in terms of the amplitude for the process ete™ — 27 as,

M(Ps — 24) = \/_/

We put a hat on the amplitude of ete™ — 2v. In the following we always use a hat to

d3/<;

K)Ca M (e, (K)e; (k) = 27). (5.54)

denote the amplitude of this process.

(a) In this part we study the decay of the S-state positronium. As stated above, we have
to know the amplitude of the process eTe™ — 27, which is illustrated in Figure 5.3 with the
B replaced with v, and is given by,

M = (—ie)6;, (p1)e (p)
_ Vi(lé1—]ﬁ1+m) " Mi(k1_}752+m) ”
o(k) {7 (k1 —p1)? = m27 I (k1 — p2)? — m2’y ]u(lﬁ% (5:55)

where the spinors can be written in terms of two-component spinors £ and & in the chiral

representation as,

ulky) = (%g) vlkz) = (—%5)
. ( 0 0“)
T\ o)

where o = (1,0") and 6* = (1, —0") with o’ the three Pauli matrices. Then the amplitude

(5.56)

We also write v* as,

can be brought into the following form,

/\ yn% in
U = i (p1)e <p2>5'*[ L Ly ]s,

+ 5.57
(ky —p1)2—m? (k1 — p2)? — m? ( )

with

Y = (\/kfg 067 0"\ky -5 — ko - 505"\ k1 - O')TTL
+ (x/l@ 05 0\ ky - 0 — ko - 57T N\ Ky - a) (ky —
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[ = (\/1@—-05%”\/@ o — ks - 50“5”\/k1—~0>m
+ (\/’@—‘05MU>\5V\/]<51—' - \/1@—-50"6%”\//@—-6) (k1 — p2)a.
In the rest of the part (a), we take the nonrelativistic limit, with the momenta chosen to be
k' =k =(m,0,0,0), Py = (m,0,0,m), ph = (m,0,0,—m). (5.58)
Accordingly, we can assign the polarization vectors for final photons to be,

h(pr) = L5(0,1,41,0), A (pa) = 55(0, ~1,i,0). (5.50)

Now substituting the momenta (5.58) into (5.57), noticing that Vk; - 0 = Vk; -7 = v/m (i =
1,2), and (k1 — p1)? = (k1 — p2)? = —m?, and also using the trick that one can freely make
the substitution o# — —o* since the temporal component of the polarization vectors ¢,

always vanishes, we get a much more simplified expression,
iM = ieZEZ(pl)ei(pQ)flT (c"c%c" — ato’a”)E. (5.60)

The positronium can lie in spin-0 (singlet) state or spin-1 (triplit) state. In the former
case, we specify the polarizations of final photons in all possible ways, and also make the

substitution ££T — \/LE (See (5.49) of P&S), which leads to,

M, = —IM® = i2V2¢?, IMS_ =iM®, =0, (5.61)

where the subscripts denote final photons’ polarizations and s means singlet. We show the
mid-step for calculating iM? | as an example,
.2

i./(/l\fH = % tr [((01 +io?)o? (—o! +i0?) — (—o' +ic%)* (0! + 102))§£/T] — i2v/2¢2.

In the same way, we can calculate the case of triplet initial state. This time, we make the
substitution £ — n - o /v/2, with n = (2 +1ij)/v2 or n = 2, corresponding to three
independent polarizations. But it is straightforward to show that the amplitudes with these
initial polarizations all vanish, which is consistent with our earlier results by using symmetry
arguments in Problem 3.8.

Therefore it is enough to consider the singlet state only. The amplitude for the decay of
a positronium in its 1Sy state into 27 then follows directly from (5.54), as

Mii(lso — 2’7) = % Aii, (5.62)

where ¢(x = 0) = /(ma/2)3 /7 according to (5.52). Then the squared amplitude with final

photons’ polarizations summed is

[ (0)]”

2m

ST IMSe = 29)|" =

spin

(|/\/li+|2 + |Mi_|2) = 16ma’m?. (5.63)
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Finally we find the decay width of the process Ps(1Sy) — 27, to be
11 d*p1d®py

1 R B o bl R 1 2 45(4) .
I'("Sy — 2v) 5 I (27)62E12E22|M( So — 27)| (2m)*6“ (pps — p1 — p2)
]_ ]_ d3p1 1 2
= 3im | GrpanE =M So = 2| @mi(m — By)
= So’m, (5.64)

where an additional factor of 1/2 follows from the fact that the two photons in the final
state are identical particles.

(b) To study the decay of P state (I = 1) positronium, we should keep one power of
3-momenta of initial electron and positron. Thus we set the momenta of initial and final
particles, and also the polarization vectors of the latter, in e"e®™ — 27, to be

k' = (F,0,0,k), Ky = (E,0,0,—k),
= (E,Esinb,0, E cosf), ph = (E,—FEsinf,0,—F cosf),
ei(p) = \%(0, cos ), i, —sin6), ei(p2) = \%(O, —cos 6, £i,sin f). (5.65)

Here we have the approximate expression up to linear order in k:

= k 3 2
\//ﬂl-U:\/kQ-U:\/E—2\/mU + O(k?),

_ ~ _ k3 2
Vks 0=k a_\/ﬁ+2ma + O(k?),
1 1 k cos 0
=— — O(k?
(k1 — p1)? —m? 2m? s (k).
1 1 kcos@ 9
(k1 — p2)? —m? T om? + 2ms3 + O,

Consequently,

I} =2m?c"(0'sg + 0°co)o™ — mk (0" 0" + 0" 0"0® + 20" 0%c") + O(K?),
FZV _ _2m20,u(0150 + 0_309)0_11 . mk(ofiauau + UMOVUS + 2O.MO_3O_V) + O(/{Q),

where we use the shorthand notation sy = sinf and ¢y = cosf. We can use these expansion
to find the terms in the amplitude iM of linear order in k, to be

—_~ k
i/\/l|o( — ie%e L(p1)e (pz)—f’T [ —2ch0" (0 59 4 03cg) 0" — 2c90” (059 + 03ch) "
+ (d°0*0” + o0V 0" + 20"5%0") + (0°0¥ 0" + 0¥ ot o” + 20"030“)} ¢, (5.66)

Feeding in the polarization vectors of photons, and also make the substitution £t — n -
o/v/2 or 1/4/2 for triplet and singlet positronium, respectively, as done in last part, we get

MY, o) =0, IME o) = —i2s(F1 + cp)e?k/m,
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i/ﬁlﬁ“]o(m = i2v2e%k /m, TH“\O( = i2v/2s2¢2k /m,
iMUow =0, 1Mﬂ|@(k = —i2sp(%1 + cp)e?k/m,
iIMET ow =0, Moy = 0. (5.67)

The vanishing results in the last line indicate that S = 0 state of P-wave positronium cannot
decay to two photons.

(c) Now we prove that the state,

d3p .
= /2], / AN S (1) (5.68)

, is a properly normalized state for the P-wave positronium. In fact,

(BI)|B(K)) = 2Mp / %% 4 (0)u(p)

X <O|b—p’—i—k/QZjTap/—i-k/Za'IH_k/zEibT_pq_k/Q|O>
&’y &p
X A01b-pr /22 TSI [0 (2) ') (b — )

’p
— My / Ty V3 (@) (P)01— /22T 010)

d’p % gt 3¢(3
= 20y [ 5k s )us(p) (0] (1)]0) (27" 0)
= 2Mp - (27)26®(0), (5.69)

which is precisely the needed normalization of a state. In this calculation we have used the
anticommutation relations of creation and annihilation operators, as well as the normaliza-
tion of the wave function and the ¥ matrices.

(d) Now we evaluate the partial decay rate of the S = 1 P-wave positronium of definite

J into two photons. The states for the positronium is presented in (c), with the ¥ matrices

chosen as o
—0, J =0,
V6
Y= %eijknjak, J=1, (5.70)
Lh"jaj, J =2,
[ V3

and the wave function given by (5.53).

Firstly, consider the J = 0 state, in which case we have,

MCP = 9030) = = [ ) (Jeo') iR (e (10 = ). (57)
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where «, 8 = + or — are labels of photons’ polarizations and a,b =1 or | are spinor indices.
For amplitude iM, we only need the terms linear in k, as listed in (5.67). Let us rewrite
this as,

iM(eg (K)ey (—k) = 7a7s) = Fag k"
In the same way, the wave function can also be put into the form of v;(x) = x'f(r), with
r = |x|. Then the integration above can be carried out to be,

. 2 1 7 a . a 7
1M(3P0 — %75) = \/ﬁ abFoz,g’] { @ (X)}

x=0

1 .

= ——ob, F £(0). 5.72

\/6_m ab aﬁ,zf( ) ( )

On the other hand, we have chose the direction of k to be in the z3-axis, then Fgg’l =
F 5?32 = 0 as a consequence. Therefore,

7
. gyes .
IMPPy — yiys) = \/—_ 0)(FI b3 chjF 5) =+ 5y sin 6. (5.73)

Square these amplitudes, sum over the photons’ polarizations, and finish the phase space
integration in the same way as what we did in (a), we finally get the partial decay rate of

the J = 0 P-wave positronium into two photons to be,

1
IR = %o/m. (5.74)

The positronium in 3P, state, namely the case J = 1, cannot decay into two photons
by the conservation of the angular momentum, since the total angular momentum of two
physical photons cannot be 1. Therefore let us turn to the case of J = 2. In this case we
should average over the initial polarizations of the positronium, which can be represented
by the symmetric and traceless polarization tensors h, with n = 1,2,--- |5 the labeled of
5 independent polarizations. Let us choose these tensors to be,

hij _ %(51‘253‘3 + 5@'35]’2)’ hij _ %(5%’1&3 + 52'353'1)’
B — \/Lﬁ(éiléﬂ + 52‘253‘1)’ hi] — \/Lﬁ(dil(sﬂ _ 51’25]'2),
W = (016 — 585, (5.75)

Then the decay amplitude for a specific polarization of J = 2 Ps can be represented as,

Pk o (niod) iKi(e
iM,, ( P — ’ya’}/ﬁ \/_/ z (ﬁhnjaj>ablM (6(1 (k)elj-(_k) — 'Va'yﬂ)

\/B—hg Zsz f(0> (576)

Now substituting all stuffs in, we find the nonvanishing components of the decay amplitude
to be,

iMo(PPy — yiye) = 13



5.5. Physics of a massive vector boson

45

7

iMo(PPy — yiys) = 13 im sin’ 4,
s of
IMs(PPy — y4y+) = F2 4 [msin 6. (5.77)

Squaring these amplitudes, summing over photon’s polarizations and averaging the initial
polarization of the positronium (by dividing the squared and summed amplitude by 5), we
get,

71'0[77%2

1 3 2 .2 .4
32’/‘/‘”( Py —2v)|" = 190 (1 +sin” 6 + 4sin® 9). (5.78)

spin

Finally, we finish the phase space integration and get the partial decay rate of 3P, positro-

nium into 2 photons to be

19
IPR) = ma7m. (5.79)

5.5 Physics of a massive vector boson

In this problem, the mass of electron is always set to zero.

(a) We firstly compute the cross section o(ete™ — B) and the decay rate I'(B — ete™).
For the cross section, the squared amplitude can be easily found to be

1 . 1
ZZIlMP:ZZ

spin spin

. 2
ige, (") u(p)| = 2¢%(p-p). (5.80)

Note that we have set the mass of electrons to be zero. Then the cross section can be
deduced from (4.79). Let’s take the initial momenta to be,

p=+(E,00,E), p=2%1(E00-E), (5.81)

with E being the center-of-mass energy. Then it’s easy to get,

2 2
g 9
0 = =(2md(Mp — ) = - (2m)2Mpd (M — 5) = mg*6 (M — 5), (5.82)

where s = E2.
To deduce the decay rate, we should average polarizations of massive vector B instead
of two electrons. Thus the squared amplitude in this case reads,

1 ) 8
5 D IMP =g (p 1), (5.83)
spin
The decay rate can be found from (4.86),

1 / dBp & 1 1
(

I =
29Mpg | (27)3 23 2B, 2E,

($XIM) 2 (o — p — 7))
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1 d3 1 16 2 12
— E2)(2m)6(Mp — 2E
QMB/(ZW)g 4E2< )( m)0(Mp = 2Ep)
4 9*Mp
= [ dpig?E2Ls(tMp - E,) = . 5.84
(27r)22MB/ P59 Bpzd(3Mp — Ey) = = (5.84)

We see the cross section and the decay rate satisfy the following relation, as expected,

1272

B

olete” = B) = (B — ete)d(s — M?). (5.85)
(b) Now we calculate the cross section o(e”et — v+ B) in COM frame. The related

diagrams are shown in Figure 5.3.

g B v B

D1 D2 D1 J??JJ"

kl kg kl k2
e et e et
Figure 5.3: The tree diagrams of the process e"e™ — v+ B. All initial momenta go inward

and all final momenta go outward.

The amplitude reads,

M = (i6) (~i9)65 (p)es () k2) [ = P lutk), (5.8

7+7k
1

Py -7,

where ¢, is the polarization of photon while e, is the polarization for B. Now we square
this amplitude,

o Z |1./\/l|2 —e g GuoGvo T {( 7”(%1 ;%)’Y” N ’Y”(}’}l B %2)’7” >k1

o <7p<%1 - ?1)70 n 70(17)1 — Fa)y” )kg}

t U
:86292|:< 1 p1) (ks - p1) 1 (k1 p1) (k2 - p1)
12 u?
2(k21-k2)(k:1~k2—k1-p1—I{:Q-pl)l
+
tu
:2e2gz{u +£+ 28(s—|—t—|—u)]
t tu
t  2sM}
:26292[3 L StuB}. (5.87)

Then the cross section can be evaluated as,

doy 1 1| ( )
(E)CM _2Ek12Ek2|Uk1 — ka2| (27T>24ECM ZZ|M|
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(5.88)

:327r25 t tu

e?g? < M3 ) {u t  2sM3
s

We can also write this differential cross section in terms of squared COM energy s and

scattering angle 6. To do this, we note,
s=FEgy, t=(Mpj—E)sin®L,  u=(M}— Egy)cos” L. (5.89)

Then we have,

do ¢’g*(1 - My/s) 2 4s M
Rl — 1 04+ ———=2— 5.90
(dQ>CM 16725 sin? 0 [ Feoso (s — MJ%P} ( )
and,
do ag?(1 — M3/s) 9 4sM?
= 1 0+ —=—1. 91
(dcosQ)CM 2ssin® 6 oSO (s — M})? (5:9)

(c) The differential cross obtained in (b) diverges when # — 0 or § — 7. Now let us study
the former case, namely 6§ — 0.
If we cut of the integral from 6% ~ m?/s, then we have,

201 2 P 1-m2/s
/ ( do ) singdg ~ 29 (1—M3/s) {2+ 4sM3 1/ dt
0. M ( )?

dcosd 2s s— M3 1—¢2
_agi(1—M3/s) 51 4sM?, log (i)
- 4s (s — M%)? m2
2 4.2
_ag? 14+ Mp/s ( s )
= s lo m): (5.92)
Now we calculate the following expression,
1
/ dx f(z)o(ete” — B)‘ECM:(l_x)S
0
! a 1+ (1—x)? s o /1o
:/0 dz {%#bg (m—g)]ﬂg 6(Mp — (1 —x)s)
2 4.2
ag® 1+ Mg/s ( s )
= | . .
> s M2 0 2 (5.93)

5.6 The spinor products (3)

This problem generalize the spinor product formalism to the processes involving external
photons.

(a) Firstly we can represent photon’s polarization vectors in terms of spinors of definite
helicity. Let the momentum of the photon be k&, and p be a lightlike momentum such that
p -k # 0. Then, the polarization vector €/ (k) of the photon can be taken to be,

k) = b)), )= T (). (599)

]
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where the spinors uy, g(k) have been introduced in Problems 3.3 and 5.3. Now we use this
choice to calculate the polarization sum,

e (k)er (k) + € (k)e” (k)

= 4p1, 2 [aR(k)’Y“UR(p)ﬁR(p)’YVUR(k) + ar (k)y ur(p)ug (p)y ur (k)
= 4p1. ot P A = =" + PR TPY Mkpf]f M (5.95)

When dotted into an amplitude with external photon, the second term of the result vanishes.
This justifies the definitions above for photon’s polarization vectors.

(b) Now we apply the formalism to the process ete™ — 2v in the massless limit. The
relevant diagrams are similar to those in Figure 5.3, except that one should replace the
label ‘B’ by ‘y’. To simplify expressions, we introduce the standard shorthand notations as
follows:

p) = ur(p), p) = ur(p), (p=1ur(p), [p = ur(p). (5.96)

Then the spin products become s(py,p2) = [p1p2] and t(p1,p2) = (p1p2). Various expres-
sions get simplified with this notation. For example, the Fierz identity (5.37) now reads
(k2" k1) [P1yup2) = 2[prka)(k1ps). Similarly, we also have (ki ko] (p1yupa] = 2(kip1)[p2ks).
Now we write down the expression for tree amplitude of eje; — ygy.. For illustration,
we still keep the original expression as well as all explicit mid-steps. The auxiliary lightlike
momenta used in the polarization vectors are arbitrarily chosen such that the calculation

can be mostly simplified.

iM(GEGZ — YLYR)
= (i)’ (p)el, (p2)ar (ks) [Vykl ip

— g2 (k2 vuprl[k170p2) [ (kay” (B, — Pk N (Ray*(By — P)V k] }
4/(kz - pr) (k1 o) t -
(k2vup1][k170p2) [ (kay" k1] {kiy" k1] — (koy"pi] (p1y" Ka]

7“+7“k1 _plfluL(kl)

= — ie?
2u t

+ (koy" k| (k1" ki ; (k2v"pal (P2 k1] }

—2ie? [ (k1ka) [p1ka](kap2) [k1k1] — (kapr) [kap1] (kap2) [k1pi)
U t

1 <k2k2>[k1p1]<k1p2>[k1k1] - <k2k2>[p2p1]<p2p2>[k1k1] }

kap1) [k1p1](kapa) [k1pi]
tu

_ g2

, (5.97)
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where we have used the spin sum identity p = p|(p + p)[p in the third equality, and also the
Fierz transformations. Note that all spinor products like (pp) and [pp], or (py*k) and [py* k]
vanish. Square this amplitude, we get

t
[iM(efre; — VLVR)‘Q = 4645. (5.98)
In the same way, we calculate other polarized amplitudes,
iM(eger, = YRYL)
_ g2 [k1%p1><k’2%p2] [’@7”(%1 - ?1)7’%0 n [k‘ﬂ“(kl - ?2)7%1)
4\/(k1 -p1) (ks - p2) t u
— 92 <k2p1>[k1p2t]<k2p2>[k1p2] ' (5.99)
U

Note that we have used a different set of auxiliary momenta in photons’ polarizations. After
evaluating the rest two nonvanishing amplitudes, we get the squared polarized amplitudes,

as follows:
t
[Mieker = v7m)]” = [Mlefer = rmm)| = de'— (5.100)
u
(Mefer =) = [Mefer = v = det—. (5.101)

Then the differential cross section follows straightforwardly,

do 9 2ra® /1t w
dcosf 16713( SZ|1M| ) <u +7), (5.102)

which is in accordance with (5.107) of P&S.
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Chapter 6

Radiative Corrections: Introduction

6.1 Rosenbluth formula

In this problem we derive the differential cross section for the electron-proton scattering
in the lab frame, assuming that the scattering energy is much higher than electron’s mass,
and taking account of the form factors of the proton. The result is known as Rosenbluth
formula. The relevant diagram is shown in Figure 6.1.

e p

]{?1 k
e 2

Figure 6.1: The electron-proton scattering. The blob denotes form factors that includes

the effect of strong interaction. All initial momenta go inward and all final momenta go

outward.

Let us firstly work out the kinematics. In the lab frame, the momenta can be parame-

terized as
ki = (F,0,0,F), p1 = (E',E'sin6,0, E' cos ), ke = (M,0,0,0), (6.1)
and ps can be found by momentum conservation, k; + ko = p; + po. With the on-shell

condition p3 = M2, we find that

B MFE
N M+2Esin2g

/

(6.2)

We also use ¢ = k; — p; to denote the momentum transfer and ¢ = ¢? its square. Note that
we have set the electron mass to zero.

Now we write down the amplitude M.

ot g, i

PR | Ulk) Tap)yalk), (63)

iM = (—ie)?U(p2) |7 Fi(q®) +

o1
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where U is the spinor for the proton and u is for the electron, M is the mass of the proton. At
this stage, we convert this expression into a more convenient form by means of the Gordon
identity (see Problem 3.2),

(p2 + ko)*

M = (00 [y + )~ 2

Ra|U() Ta)alk). (64)

Now, the squared amplitude with initial spins averaged and final spins summed is,

%Z M| = 46—;4tr KW(F1 + Fy) — ME) (ko + M)

2M
(ot 1) = 2R 00| ko)

4et M?
~ (2R R+ B (1+ 4) ) (B + B)? + ¢(

|:(2E2+2El2+q2)(F1+F2)2

&) e

There are two terms in the square bracket in the last expression. We rewrite the first factor
in the second term as

2F1F2—|—F2<1+4M2>:(F1+F2)2—F12+4M2F22,

and combine the (Fy + Fy)? part into the first term, which leads to,

4

4e" M?
—Z|M|2 . {QMQ(FﬁFQ) +4(F2 — L F2)EE cos® L

where we have used the following two relations which can be easily justified,

E—-E= L (6.6)

2m?

¢° = —AE'Esin® £.
Now we can put the squared amplitude into its final form,

16e*E2 M3
LM = o
]\/[—|—2Es1 5)

e
2 2 0 2 0
X |:(F1 4?\/[2}7 ) 7 2M2(F1+F2) sin” = (68)
On the other hand, we can derive the A+ B — 1+ 2 differential cross section in the lab
frame as
1 d3p,d?
dop, = Pic P2 IM22m)46D (py + po — pa — i) (6.9)

2EA2EB|VA - VB| 27T 62E12E2
In our case, B4y = E, Eg =M, Fy = E', and |v4 — vg| ~ 1, thus,

doy, = / E0idps 1200059 (0, + py — s — p)
4EM 2T 62E12E2
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E2dE'd cos §d
4EM/ 8P | MPP2n)S (B + Ey(E') — E — M)

(2m)32E"2E,
12 / r —1
_ /E dEd(:OS@d(pM/l‘2 " E'— Ecosd sle — ME‘ .
AEM 2m)22E"2E, E5(E") M +2Esin” 5

B /dcos@ FE’
~ 4EM M +2Esin® &

where we use the notation Fy = Ey(E’) to emphasize that F, is a function of E’. That is,

=+VM2+ E2+ E”? —2F'E cosf.

Then,

do ) 1
= | M2 (6.10)
<d0089 L 327 (M +2Esin? £)°
So finally we get the differential cross section, the Rosenbluth formula,

( do ) B Ta?
dcosf/1 2E2(1—|—%Sm2 %) sin4§

2

2M2 (Fy + Fy)*sin* £ (6.11)

2

2 > 12 2 0
X [(F1 — {15 F) cos® & —

6.2 Equivalent photon approximation

In this problem we study the scattering of a very high energy electron from a target in
the forward scattering limit. The relevant matrix element is,

A4=«4@Mﬁwwm»%%ﬂﬁ?my (6.12)

(a) First, the spinor product in the expression above can be expanded as,

B u(p) = A ¢+ B-q +C b4 D (6.13)
Now, using the fact that g,u(p’)y"u(p) = 0, we have,

0=A¢°+Bq-§~—4AEE'sin*£ +Bq-¢ =  B~0. (6.14)

(b) It is easy to find that
el = N(0,p' cos — p,0, —p'sin ), eh =(0,0,1,0),

where N = (E? + B — 2EE' cos)~'/? is the normalization constant. Then, for the right-
handed electron with spinor u, (p) = vV2F(0,0,1,0)” and left-handed electron with u_(p) =
V2E(0,1,0,0)T, it is straightforward to show that

uy(p') = V2E(0,0,cos &, sin £)7, u_(p') = V2E'(—sin £ cos £,0,0), (6.15)

27 27
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and,
_ E+ FE
uﬂ:(p )7 elui(p) — EE |E _ E/|0’ (6 16)
ux(p')y - €us(p) ~ +iVEE'S, 6.17
Ut (p)y - €ruz(p) = U (p')y - €2uz(p) =0 6.18)
That is to say, we have,
E+ F
Cp = —\/EE’ﬁQ, Ds = HVEE. (6.19)
(c) The squared amplitude is given by,
2
€ A A * Uk * vk
Mos|* = WM;L(Q)M (@) (Cref + Dicy) (CLeér™ + Dies™). (6.20)

Averaging and summing over the initial and final spins of the electron respectively, we get,

1 62 A A * Uk
b > M= WMM(Q)MV(Q) {(!C+!2 + O P)efer” + (ID4* + [D_|?)eye

+ (CyDy + C_D*)efey* + (CDy + C* D_ )ege’f*]

2

€ A A / E+ El 14 14
= WMM@)MV(Q)EE 6 {( o ) el + ehes } . (6.21)

Then the cross section reads,

/da _ 1 / d3p d*p, Z M2 ) (27)46@ (Zp)
2E2M, | (2r)32E (27°)2E, i
e? d3p' EE0* [/ E+FE
= ory
2E2M; ) (2m)32F" 3(¢?)? [\ E — F'

d3pt 44
< /(2—)|M (@) (2m) ' ()

_ n 2
- QE;MtZO;T/dx[ <2xx>2}/0d6%

< [ a6 (). (6.22)

where we have used the trick described in the final project of Part I (radiation of gluon jets)
to separate the contractions of Lorentz indices, and z = (E — E’)/E. Now let us focus on
the integral over the scattering angle 6 in the last expression, which is contributed from the

i 6? sin 0 dé
-  ~ | == 2
/0 40 4(1 — cos6)* /0 7 (6:23)

which is logarithmically divergent as 6§ — 0.

following factor,
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(d) We reintroduce the mass of the electron into the denominator to cut off the divergence,

namely, let ¢> = —2(EE" — pp cos ) + 2m?. Then we can expand ¢?, treating m? and 6 as

small quantities, as,
2

x

m2.
11—z
Then the polar angle integration near § = 0 becomes,

2 272 2

1 E

46 6% | 6 AL IO Py
/o [ T B 2 % m

¢~ —(1—2)E*? —

(e) Combining the results above, the cross section can be expressed as,

B 1 2—1\2 3| o 2 m2)7?
/da_ 2E2Mt27r/dx[ ( = )]/Odw {9+(1—x)2E2

[ s ()

1 « /d 1+ (1—x)? | E?
= — x 0
2E2M, 27 2 & m2

[ 5 ().

6.3 Exotic contributions to g — 2

(a) The 1-loop vertex correction from Higgs boson is,

w0t =(75) / dlj dr= p)i T

1)\2 e ddk’ 2a(p") N u(p)
d.T d k’2 A) ’

Nt = (k4 ¢ +m)y"(k +m),
K =k —xp+yq,

with

A=1-z)m*+amj —z(1 —z)p* —y(1 —y)g* + 2zyp - q.

To put this correction into the following form,
ot q,
2m

' =~"Fi(q) + Fy(q),

we first rewrite N* as,

Nt =Ay"+ B +p)t+C(p —p)*,

(6.24)

(6.25)

(6.26)

(6.27)
(6.28)
(6.29)

(6.30)

(6.31)

where term proportional to (p’ —p) can be thrown away by Ward identity ¢,I'*(¢) = 0. This

can be done by gamma matrix calculations, leading to the following result,

N = [(3 = )2+ 3+ 20 = 2)m® + (y — oy — y)a 7" + (2 = m(p' + p)"

(6.32)
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Then, using Gordon identity, we find,

4
" aq,

NF = [(% —DE + (z+1)'m* + (y -y - xy)qQ] P+ 102m 2m(1—2?).  (6.33)

Comparing this with (6.30), we see that

1z d4l<;’ 1—
6Fy(q = 0) = 2i\*m? / dx/ dy/ T )

oA (1—2)*(1+ ZB)
= | T w(mh/m) (6.54)

To carry out the integration over x, we use the approximation that mj; > m. Then,

0F>(q = 0) ~ (4):)2 /01 de {1 +x(;h/m)2 - 1(:';:/;‘;2]

~ B [log(mi/mQ) — %} (6.35)

(b) According to (a), the limits on A and my, is given by,

Al 2 % 10~10
(4ﬁ)2(mh/m)2[log(mh/m) 6] <1Ix107. (6.36)

For electron, A ~ 3 x 107% m ~ 0.511MeV, and with m;, ~ 60 GeV, we have §Fy(q = 0) ~
10722 <« 1071°, For realistic case m;, ~ 125GeV the effect is even smaller. On the other
hand, for muon, we have A = 6 x 107*, m ~ 106MeV, and with the input m;, ~ 125GeV,
we have 6Fy(q = 0) ~ 10714, At present the experimentally measured muon’s anomalous
magnetic moment is a bit different from the prediction of Standard Model, and the difference
is of order 1077, a not decisive but still noteworthy “anomaly”. More can be found in [3].

(c) The 1-loop correction from the axion is given by,

u(p')oT u(p) :< ;i )2/ (d ljd = p; — m%a(p’)fk m gl — mv“k _1 mv%(p)

2
1)\2 1 d?k" 2u(p’)NHu(p)
= / dx/ dy/ 1 k:’2 NI (6.37)

in which &’ and A are still defined as in (a) except the replacement mj;, — m,, while N* is

now given by,
Nt = (k+ g +m)y"(k+m)y* = —(k+ ¢ —m)y"(k —m). (6.38)
Repeating the same derivation as was done in (a), we get,

Nt =[= (2 -1k = (1 -z -y + (1 —2)’m*]y" — (L —2)’m(p' +p)>.  (6.39)
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Again, using Gordon identity, we get,

417 i 2
0Fy(q = 0) = — 2iX*m? / dg;/ /dk k:’12 AT
L /d 1—£L’
- (47r)2 ; 5”(1—:@ + am2/m?

S /1dx 1 _ 3-3z+2a?
o (4m)? ), 1+ zm2/m? m2/m?

= Gy losmin®) = 2] (640

For order-of-magnitude estimation, it’s easy to see that Am/m, = 107° is excluded.

Y
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Chapter 7

Radiative Corrections:
Some Formal Developments

7.1 Optical theorem in ¢* theory

In this problem we check the optical theorem in phi-4 theory to order A\2. Firstly, the
total cross section oy at this order receives contributions from tree level only. The squared
amplitude is simply A2. Then its easy to get the total cross section by complementing
kinematic factors. That is,

)\2
167s’

where s = E2y; and Ecy is the COM energy. Then, consider the imaginary part of the

(7.1)

Otot =

scattering amplitude. The contribution comes from 1-loop diagram in s-channel this time.
Let’s evaluate this amplitude directly,

L, A% i X Atk [t 1
M= E(_M) / (2m)¢ k2 —m? (k — p)2 — m? - 7/ (27r)d/0 de (k2 — A)?

— iz [3 —7+10g47r—/1 dz log (m2—x(1—x)s)] (7.2)
2(4m)? Le 0 ‘ '
Therefore,
ImM = — A—Q /1 dz Im[log (m* —x(1 - x)s)] (7.3)
2(4m)* Jo . .

The argument in the logarithm is real, thus the imaginary part of the logarithm equals to 0
or —m depending on the argument is positive or negative. (Strictly speaking the imaginary
part is —7 but not 7 due to our ie prescription.) Then we see this logarithm contributes an
constant imaginary part —m, only when

1—+/1—4m?/s 1+ +/1—4m?/s

<r<

2 2
Thus we have
Im./\/l:)\—zx/l—llmQ/s:m (7.4)
327 167TECM ‘ .

29
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7.2 Alternative regulators in QED

In this problem we compute the first order corrections to Z; and Z5 in QED, using cut-off

regularization and dimensional regularization respectively. By definition, we have,

(g =0)=Z; 7", (7.5)
)y
Zyt=1- > (7.6)
dp p=m

Let’s begin with dimensional regularization instead of momentum cut-off.

(b) Dimensional Regularization We firstly calculate §F7(0):

u(p')oT" (p, p)u(p)
iy Ak —igy, N S
=(—te) /(QW)C,(k_p)Q_M2 )y Erg—m F—m’ (p)
_ 2/ A%k a(p )y (k 4 ¢ + m)y*(k + m)yPu(p)

(2m)4 ((k —p)? — 1) ((k + @)* — m?) (k> — m?)

= — i / (ng’;d /O o /0 - dy 21255;)]_VZ? ) (7.7)

in which we define

K =k—ap+yq,

A= (1—a)m® +ap® — o(l - 2)p* - y(1 - y)g® + 2xyp - q,

N =, (F 4 ¢ +m)y" (k +m)y”.
The next step is to put N* into the needed form. The calculation is basically in parallel
with Peskin’s Sec.6.3. Let me show some details. The first step is to finish the summation

over dummy Lorentz indices. Note that we are using dimensional regularization, thus we
should use Peskin’s Eq.(A.55). The result is:

N = —2fy" (J+ ) +4m(2k + )" — (d— 2)m*y" + (4 — d) [(% + "k —mk+ )" - mv“%] :

It’s worth noting here that d will be sent to 4 at the end of the calculation. Thus in the
square bracket in this expression, only the combination fy*f contributes to the final result.

Thus we simply have
N = =2f~"( + ¢) + 4m(2k + q)* — (d — 2)m*+" + (4 — d)f"F. (7.8)

Here and following, we are free to drop off terms in N* which contribute nothing to final
results. The equal sign should be understood in this way. The next step is to rewrite N* in

terms of &’ instead of k:

N* = (2= d)Fv"F — 2[xp — yd] " [xp + (1 — y)g] + 4m [2zp + (1 — 2y)q]" — 2m>4*. (7.9)
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Terms linear in £” has been dropped since they integrate to zero. The third step is to put N*
into a linear combination of 4, (p+p')*. Terms proportional to (p—p’)* will be dropped due
to Ward identity. The basic strategy is using substitution ¢* = (p’ — p)*, on shell condition
u(p')p’ = u(p')m and pu(p) = mu(p). Here we show the detailed steps for the second term
above:

= 2[zp — yg|7" [zp + (1 - y)q]

—2[2*py"p — y(1 — )¢ — zydy"p + =(1 — y)py"d]

—2[z*(2p" - v”p ;;iﬁ y(1—y)(2¢" —+*d)d — zygy"p + =1 — ) (¥ — d)7"¢]
—2[22%mp" — 2*m*y + y(1 — y)¢*y" — 2zymg” + amy*¢ — (1 — y)gr"¢]
[ z(z + 2)m*y* + (z + y) (1 — y)@*y" + 2>mp* + 2:Emp'“}.

Combining this with other terms, and also make the momentum symmetrization (Peskin’s
Eq.(7.87)), which amounts to make the substitution:

Ky k' — (2 - 1)k,
we get
N# = B gl 4 [2(22 4 20— 1)m? — 2(z +y) (1 — )27 + 22(1 — 2)m(p +p)*. (7.10)

Now we employ Gordon’s identity

PPt 0
2m 2m

u(p )y u(p) = u(p’) }U(p),

to put N* into a linear combination of v* and o*”:
N = [(2_(;02 K2 = 2(2% — 4o+ 1)m? = 2(z + y)(1 — y)¢’]7" — 22(1 — 2)mic"q,. (7.11)

Now we have put the vertex ['* into the following form:

I = 4 Fi () + -2 iy (). (7.12)
2m
We are interest in dFi(q), which is related to §Z; by 0Z; = —0Fi(¢ = 0). Finishing
momentum integral:
ddk’ 1 e
§F1(0) = — 2ie? / da:/ dy/ i A) [(2 dd) k? —2(z® — 4o + 1)m”?]

A)
o 2— PTR=5) | ,T(3—4)
and sending d =4 — € — 4:

2¢?

SR0) = (1 /Oldx(l—x) [%—wrlogzm
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(2% — 4z + 1)m?
(1 —2)?m? + xp?

—log ((1 — z)*m* + ap®) — 2+ , (7.14)

we reach the needed result 67; = —§F;(0). Now let us turn to Z;. The correction of first
order is given by 6Z, = (dX/dp) | o’ Therefore we’d better evaluate %(p) using dimensional
regularization.
d? i —i
_in (s 2 m
=) =i [ G
d 2 _ dy./ 1 2 _d + d
:_62/<dk (2—d)f +dm ):—eQ/dk /dx< )Jrp + dm
0

2m)e (k2 — m2)((p — k)2 — 2 (2m)d (k2 — A)2
- _ —(4:)d/2 /0 dx% [(2 —d)xp+ dm], (7.15)
where
K =k — xp;

A= (1—z)m?+zp® — z(1 —2)p°.

Then we can compute

d¥ 2 1 _ 4 _a _d

d;p) :(47r)d/2/ dx[—rfzd/g) (2—d)z— 2 QAZ,FS/QZ 2 (32 (2- d)xp+dm)]

:M;W /0 dz {%(2 —d)z + %Qm —2)p((2 — d)ap + dm)} .
(7.16)

Then, setting p = m and d =4 — € with € — 0, we get
dX(p) =2 ! )
ap ‘p:m = ny /0 dx:z:[? + v+ logdm

—log (1 —z)*m* + ap®) — 1 — 2((11__5)2;32__#2212 } (7.17)

Now it’s still not easy to see 0Z; = 07, immediately. To make this transparent, we need

some more steps. Let’s focus on logarithm term:

- /o dz(1 — z)log ((1 — 2)’m® + zp®) = — /0 dz(1l — 2z + z)log ((1 — 2)*m® + xp°)

! (1 —2)(1 — z*)m?
- d[l—— — zlog ((1 — z)*m? 2} 7.18
[ e[ — ) - G o (1= 2+ ) (718)
Combining this with other terms, and also using the fact [zdz = [(1 — x)dx, we get
262 1 )
IF1(0) = e ), dzx [? — v+ log4n

—log (1 —z)*m* + ap®) — 1 —

2(1 —z)(2 — x)m? } (7.19)

(1 —x)?m? + xp?
Now it’s clear that 077 = §Z5. Thus Z; = Z5 keeps unaffected at this order when dimensional

regularization is used.



7.3. Radiative corrections in QED with Yukawa interaction 63

(a) Momentum Cut-off Now we repeat the calculation above using momentum cut-off.
Now we can directly borrow some results above. All we need to do is setting d — 4 and
adding a UV momentum cut-off A, as well as the following integral formulae:

A qtk 1 )
/ (27T)4(k2—A)2:16 2[1%(” 2) - ),

A ik k? i AMA243A) 3
@)t (R — A 16 7 [los (1 ) + SR - 3],

/A d'k I A
(2m)* (k2 — A3 3272 A(A2+ A)2

We begin with (7.13):

6F1(0) = — 2i d T d4k/ ! K? —2(2® — 4z + 1)m®
1(0) = — 2ie? x Yy T - AV [K? = 2(2* — 4z + 1)m?]
e? A? (2 —4dx+1)m* 3
=y s (1) [log (1 + K> + B - (720

In the same way, we get

41. -9
—iN(p) = 2¢2 / d k z’z m, (7.21)
and
dX(p) —e? [ A? 22(1 — x)(x — 2)m?
— = — 1 1+—) - : .22
ay ‘p:m 82 /0 dx{“” og (145 ) — o+ A (7.22)

This shows that 077 # 07, with cut-off regularization.

7.3 Radiative corrections in QED with Yukawa inter-

action

(a) Let us calculate the first order corrections to Z; and Z,, as was done in Problem 7.2.
Firstly, we calculate 6I'*, which is similar to the corresponding QED correction:

a(p’)oT* (p, p')u(p)

9 , [ d% i oy i L .,
) /( T e
_ / de [ dy / dkd 2ka2 NZ“L)( ), (7.23)

where

k' =k—xp+yq,



64 Chapter 7. Radiative Corrections: Some Formal Developments

A= (1—-x)m*+ :Emi —z(1 —2)p* —y(1 —y)¢* + 2zyp - q,
Nt = (F+ ¢ +m)y"(k +m).

Then we put this correction into the following form, in parallel with steps of Problem 7.2.
That is: (1) replace k by k" in N*:

NF = Fy + (op+ (1= y)g +m) 7" (2p — ygd + m);
(2) rewrite the numerator N* by gamma matrix relations and equations of motion, as
N¥ = [(% — D)k? + (3422 —a")m® + (y —xy — y2)q2} P+ (@ = Dm(p' + )
(3) use Gordon identity to further transform N* into:

iTofud
NF = [(% — 1)k’2 +(z+1)Pm* + (y— 9y — xy)qQ]fy“ + 5

2m2(1 — 2%).

Then, we can read off § F; from the coefficient of v*, as:

0F1(0) = iN® /01 dz /01_m dy/ ((Qij:;d (k" i A)3 [(% — )E? + (z + 1)2m2]
)\2 1

2, 2 2 (v +1)*m?

—log ((1 —2)*m* 4+ am?) — 1+ (= o)m? + ol | (7.24)

Using the trick identity (7.18) again, we finally get

/\2 1 )
0F1(0) = —— d £ — log 4
1(0) 2(477)2/0 xm{e ~v + log 47
2(1 — z*)m?

2,2 2

—log ((1 — 2)*m® + xm}) + (= oy + am2 | (7.25)

Now we calculate %(p).

: : o [ A%k i i LN A [ aptm
=)= N [ G, Mo AT

i)\? 1
= W/o dx[%—fy+log47r—logA](a:p—|—m), (7.26)
where k' = k — zp and A = (1 — 2)m? + zu® — (1 — x)p?. Then we have

dE(p) _)\2 1 )
ay ‘pm = —2(47r)2 /0 dxw[? — v+ log4rm

—log ((1 —z)*m* 4+ zm3) +

2(1 — 2?)m?
5 |-
(1 —2)*m? +am]

(7.27)

Thus we have proved that 6Z; = dZ, holds for 1-loop scalar corrections.
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(b) Now consider the 1-loop corrections to Yukawa vertex. We focus on the divergent part
only. The equalities below should be understood to be hold up to a finite part. Then, for

vertex correction from photon, we have

) i d?k —i L i
6F(p>19)}ph0ton _< ) /( )d(k—p)Q— 2’7 %+g—mk—m%

11—z ddk 2dk/2
—ie / d:v/ dy/ N TZINE

-z 2——) 4e? 2
ar dﬂ/ dx/ N T e (7.28)

In the same way,

/ iy ddr i i i
L0 e =(~75) /< )k~ p)2 —mZ kt g —mf—m
i / dx/ dy/ ddk k’fk - 2(—4??)2% (7.29)

On the other hand, the 1-loop corrections for electron’s self-energy also come from two

parts: one is the photon correction, which has been evaluated in Problem 7.1,
2

ie Lo T@e2-4 ie2(p — 4m
~12(P) | ppoton = _W/o dxﬁ [(2 = d)zp + dm] = %% (7.30)

and the other is the scalar correction:

—iAN2 [ A% i i IN(p + 2m) 2
—i% — = — 7.31
=Wl = (75) | = = e e
To sum up, we have got the total vertex correction:
) ) ) 4e? — N2/2 2
5F(p7p> - 5F<p’p )‘photon + 5F<p’p )’scalar - W?’ (732)
and also:
dE(p) d[2<p)photon + E(?)Scalar] 62 + /\2/4 2
_) _ ‘ __£rr/r2 (7.33)
dp p=m dp p=m (47’(’)2 €
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Final Project I
Radiation of Gluon Jets

In this final project we do a basic exercise about cancellation of infrared divergence. An

excellent pedagogical treatment of infrared divergence can be found in [2]

(a) First we calculate the 1-loop vertex correction to M(eTe™ — ¢q) from virtual gluon.
The amplitude is given by

M = Qst=ie)io )| [ G g e g o )

— 2
(7.34)

Now we simplify the loop integral in the standard way, as was done in Problem 7.2. The
result is

, , Ak [* 1-e (A d k" z)(z+y)¢*) 7.
M= —192[/—/ dx/ dy (k’Q(—A)?’)( ) )]IMO

(1 —2)(x +y)¢* .
/ dx/ ay| 4A2 d/Q @odpy 4y e T (3= 4)]iM

(1 —2)(x +y)¢*

471‘ d/2
2¢g°

= dx dy %—7+10g47r—10gA—2+ A :|ng,
(7.35)
where )
iMo = Qf(—ie)Qﬂ(pl)v“v(pz)q v(k2)yuu(k) (7.36)
is the tree amplitude, and
K=k—xq—yp,  A=-z(l-z—-y)¢®—y(1—y)pi+yp’ (7.37)
With the external legs amputated, the result is,
2 2
. Y (I—2)(z+y) 7.
= L ) ,
M / / Og T s e A s r—" el
(7.38)

67
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Then the cross section is given by

Ao

olete” = qq) = 3R (¢ = 8) % (7.39)

with

File = 9) = Qs+ Qf : / / log Y —x(ylui$—y)s>

(1 —2)(@ +y)s ]
yp? —a(l—x—y)sl

(7.40)
We will carry out the Feynman integration in (e).

(b) Now we simplify the 3-body phase space integral

d3ky dBhydB ks
dII (g —ky —ky — k 41
Jam= [ Gtk — k= k) (741

in the center of mass frame. It is convenient to introduce a new set of variables z; = 2k;-q/¢?,
(i = 1,2,3). In COM frame, z; = 2E;/E, Then one can show that all Lorentz scalars
involving final states only can be represented in terms of x; and particles masses. In fact,
we only need to check (ky + ko)?, (kg + k3)? and (k3 + k1)?. From instance,

(ky + k2)2 = (q— k3)2 =g+ m% —2q-ky=s(1—x3)+ mg. (7.42)
Similarly,
(k2+]€3)2 = 8(1 —l’l) —i—mf, (k/’3+k1>2 = S(l —Ig) +m§ (743)

To simply the phase integral, we first integrate out k3 with spatial delta function that
restricts ks = ky + ko:

‘/ﬂl / ki ks (2m)0(E, — Ey — Ey — E) (7.44)
°7 | (27)2E,2F52F; ¢ T '

The integral measure can be rewritten as
APk d%ky = kT k3dk,dkydQdQy,, (7.45)

where df); is the spherical integral measure associated with d3k;, and d€2, is the spherical
integral of relative angles between k; and k. The former spherical integral can be directly
carried out and results in a factor 47. To finish the integral with d€2;5 = dcos #12dp1s, We
make use of the remaining delta function, which can be rewritten as

(7.46)

Bty

Es
5<Eq—E1—E2—E3) = —(5((?08012 2/{:1]{:2

k1 ko
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by means of Ez = \/k? + k3 + 2k kg cos§ + p2. Thus

87T2E3
kiks

/dQldng 5(Eq - E1 - EQ - Eg) ==

Now using kijdk; = EydF, and kodky = EodEs, we have

dkydky k2K 872E; 1 )
dit = dEdBy = —— [ dzydzs. 4
/ s / 27T 5E1E2E3 k‘le 327T3/ 1 2 1287T3/ T1AT2 (7 7)

To determine the integral region for m; = ms = 0 and mgz = p, we note that there are two

extremal cases: ki and kg are parallel or antiparallel. In the former case, we have

E,=E +Ey+ E3s=FE + Ey + /(B + Ey)? + 112, (7.48)

which yields
2E,(Ey + Ey) = E? — 112, (7.49)

while in the latter case,

E,=E\ + By + \/(E1 — B2)? + pi2, (7.50)

which gives
(E, — 2E\)(E, — 2F,) = pi*. (7.51)
These two boundary cases can be represented by z; variables as

2

Tl ay=1— “T; (7.52)
12

The integral thus goes over the region bounded by these two curves.

(c) Now we calculate the differential cross section for the process ete™ — ggg to lowest
order in a and ay. First, the amplitude is

IM = Qg(—ie)*(—ig)e; (ks)u(k )[ %1%3 7% %3 v(k ) ' -0 (p2)yut(py)-
(7.54)

Then, the squared amplitude is

—Z|M|2

224

(=guo) tr (%Pﬂp}%)

1 IS S
o {( k1+k3v -7 k2+%3 )k2< k1+k37 ! }{‘Q—F}ég7 >k1}
o R e ey
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1 1 )
(o g ) @Rk = k)| (7.5)

We have used the trick described in Peskin’s book (P261) when getting through the last

equal sign. Now rewrite the quantities of final-state kinematics in terms of x;, and set yn — 0,

we obtain
2 g2e!
2(1 — x3) -z  1—x
— M 8
Z|1 F= e B pQ){(l—xl)(l—x2)+1—:v2+1—331
802 ;264 2 2
- Qf g ntr (7.56)
3s (1 —x1)(1 —a9)
Thus the differential cross section, with 3 colors counted, reads
do 1
dzidaglcom  2E, 2Epzyvp1 vp2| 128ﬂ3< 2 M )
Ara® 2+ 232
= Qf L2 (7.57)

(1 —x1)(1 —x2)’
where we have used the fact that the initial electron and positron are massless, which implies
that 2E,, = 2E,, = /s and |vp, — vp,| = 2 in COM frame.

(d) Now we reevaluate the averaged squared amplitude, with p kept nonzero in (7.55).

The result is
2 g%el

i Z iMP? = —L——F (21,2, 4°/5), (7.58)

where

F( M2) 2($1+I2—1+%2)(1+MT2)
r1,To, — ) =
1,42, 7y (1 _ I’l)(l _ Q:Q)

1 1 .
L)1 — ) - £). 7.59
+ |:(1 — x1)2 + (1 — .’,172)2:| (( l’l)( 1'2) 5 ( )
The cross section, then, can be got by integrating over dz;dzs:

1 s

daydas (432 IMP)
2EP12EP2|Up1 - Up2| 12873 / T1dT2\ 4 Z| |
2
T -6

Ao’ a, [ —a1) 2
= -3 2-—9/ d / dwy F (21, 29, 2
3s Qf o J, L1 o2 L2 (951 T2, 7 )

1 G
Lt 8log L5 — 47 4 O(m]. (7.60)

olefe” — qqg) =

dra® a
= .30%2. =% [1 2
35 W o8

(e) It is straightforward to finish the integration over Feynman parameters in (a), yielding

2
Fi(¢*=s) = Qf Q [IOg +310g——|————7r —1%(210g'u—2+7)+(9( )}

(7.61)
Then the cross section, to the order of oy, is given by

Ara’

12
olete” —qq) = : 3@;{1 ~ 5y [1 og® — + 310g —+I- %71’2] + (9(,u2)}. (7.62)
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(f) Combining the results in (d) and (e), we reach the final result:

2

_ _ Ao 3
o(ete™ = qq+qqg) = Ty 3ch {1 + 47: ] .

It is worth noting that all divergent terms as @ — 0 cancel out in this expression.

(7.63)
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Chapter 9

Functional Methods

9.1 Scalar QED

The Lagrangian for scalar QED reads,
L=—3F,F" + (D,9)"(D"¢) — m*¢'e, (9.1)
with

F, = 0,4, — 0,A,, D, = (9, +ieA,)s. (9.2)

(a) Expanding the covariant derivative, it’s easy to find the corresponding Feynman’s

rules:
(AM-A,/-¢T—¢ interaction) = 2ie’*n”,
(Au-¢'(p1)-6(p) interaction) = — ie(p; — p2),

with all momenta pointing inwards.
The propagators are standard. We will work in the Feynman gauge and set £ = 1, then

the propagator for photon is simply '
_anﬂ/
p? + i€’

and the propagator for scalar is '
i
p?—m?+ie
(b) Now we calculate the spin-averaged differential cross section for the process ete™ —

¢*¢. The scattering amplitude is given by

M = (e o)y ulha) (o1 — o)y (9.3

Then the spin-averaged and squared amplitude is

LS IME = S (9, - ki, — B

spins
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= 12 [8(ky - pr — k1 - p2) (ko - pr — ko - p2) — 4k - ko) (p1 — p2)?]. (9.4)

We may parameterize the momenta as

ki = (F,0,0,F), p1 = (E,psin6,0,pcosb),
ke = (F,0,0,—F), pa = (E, —psin®,0, —pcosf),

with p = vV E? — m2. Then we have

1 €4p2
n > IMP = g s’ . (9.5)

spins

Thus the differential cross section is:

do 1 o? m2\3/2
(d_Q>CM T 2(2E)2 8(27r)2E< 2 M ) <1 - ﬁ) sin” 0. (9-6)
(c)
_ 9ip2 Ak o [ % (p=2k)u(p = 2),
0l = 2 mw/ e —mz () / 2 02— ) (p— I — i)
_ 62/ A’k 20, ((p = k)* —m®) — (p — 2k),.(p — 2k),
G (R ((p— - m?)

- _ 62/ 7k’ /1 da 2w (ka + (1 —2)*p* - ) + (1 — 22)%p.p, + 4K E"
N (2m)7 Jo (k2 — A)?
o 62/ A4k’ /1 s 20, k"% (1 — %) + 27]#1,((1 —x)?p? — mz) — (1 —22)*p,p,
- (2m)% Jo (k2 — A)?

_162 ! (1 - %)F(l - %)277;111
- (47T)d/2/0 dx[ A2-d/2

(2 -

+ AQ—d/Q)<277W’((1 —a)’pt=m?’) = (1 - 256)219“%)}

= (4—7:;/2 /0 dz % [2((1 — x)2 _ x(l — x))p%hw . (1 . 296)2]0“19,,}. <9'7)

We can symmetrize the integrand as (1 — z)? — +((1 — 2)? + 2?), then we get

152

—ie L Ir@e-4)
51_[/“, = W/O dzx W(l — 21’) (pzﬁwj _p,up'/)' (98)

9.2 Statistical field theory

In this problem we study the path integral formulation in statistical mechanics. The
theory can be described by the partition function:

7 = tre P, (9.9)
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where H is the Hamiltonian of the system. It is a function of the generalized coordinates
q and the corresponding conjugate momentum p. In this problem, we simply assume the
Hamiltonian has the following form:

He 2 v (9.10)

2m

We assume the dimension of the configuration space is d, then both ¢ and p have d compo-
nents. Then we assume the eigenstates of both ¢ and p form a complete orthonormal basis

of the Hilbert space:
d d’p
L= [ d%]|g)ql; 1= (2W)d\p><p|- (9.11)

Then the partition function can be written as
Z = tre P = /ddq (qle™|q). (9.12)

(a) Now we derive a path integral expression for the partition function. Following the
same way of deriving path integral in a quantum field theory, we separate the quantity e=##
into N factors:

e Pl = g=H .. o=<H (N factors),

then inserting a complete basis between each pair of adjacent factors, as

e P = /ddQI"'dd(]N—1<Q|6_€H|QN—1><QN—1|6_€H|QN—2>"'<91|€_6H|Q>-
Now we focus on one factors:
—eH —E(LPQ'FV(Q)) —eV(qs) — 5= p?
(Giv1le” 7 q) = (Giyr|e”\2m @) = e (qigale” 2m" [qi),

and

__€ 2 ddpi+1ddpi —ep?/2m
<Qi+1’€ 2m? ’Qh) :/W@Hl\piﬂﬂpiH’e /2 ’pz><pz|q'z>

d
_ / (d I;deip(q¢+1qz')eﬁp2/2m - [Qﬂ}dme*m(qiﬂffh’)z/?ﬁ'
27-(- e

Inserting all this into the partition function, we get:

N
7 [%} Nd/2 H/ddqi exp [— W%G_%)Q _ EV(qi)}, (9.13)
1=0

with gy11 = qo-
Now let N — oo, then we have

7 = /Dq exp [— 5]§dTLE(T)], (9.14)



76

Chapter 9. Functional Methods

where the integral measure is defined by

m  Ndi2 N
Dy = li [ ] ag:, 1
7= B 2me(N) H 4 (9.15)

and Lg(7) is a Lagrangian in Euclidean form:

dg

Le(r) = 5-(S5) + Vi) (9.16)

Note that the periodic integral on 7 comes from the trace in the partition function.

(b) Now we study an explicit example, a simple harmonic oscillator, which can by defined
by the Lagrangian

Lg = ¢* + $w’¢. (9.17)
Our task is to complete the path integral to find a expression for the partition function of
harmonic oscillator. This can be easily done by a Fourier transformation of the coordinates

q(7) with respect to 7. Since the “time” direction is periodic, the Fourier spectrum of ¢ is
discrete. That is,

q(r) = B2 " erirliy,, (9.18)

n

Then we have:

1 2mi \ 2 .
Jorsatr= oy S [ s i

1 27 \ 2 1 2\ 2
= - [(i) mn + wz] InGnOm—n = 5 Y [(—W> n? + w2] Gnd—n

2 4=\ B 2=\ f
“ 3 X[ e 15
neL

Then the path integral can be written as,

7 = C’/dqo e~ P / HdReqndImqn exp [— §<47rﬁ_22712 + w2> |qn|2]

SO ] ST ()]
= C'sinh(Bw/2) = CZexp — Bw(n+ 1)]. (9.20)

(c) From now on we will consider the statistics of fields. We study the statistical properties
of boson system, fermion system, and photon system.
For a scalar field, the Lagrangian is given by,

Lg(t) = /d3 ! |:¢2(T X) + (V¢(T,X))2+m2¢2(7,x) : (9.21)
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Following the method we used to deal with the simple harmonic oscillator, here we decom-
pose the scalar field ¢(7,x) into eigenmodes in momentum space:

3
o(r,x) =712y et / %eﬂ”‘m. (9-22)

n

Then the Lagrangian can also be rewritten in terms of modes, as,

Brd3E 1 2 2
/dTLE(T) :/de?’xZ/ ) { ;1) n’n—k’.k—i—mQ}

X P ey gor €27 HTIT/BHIeH) x

:_Z/ &k { 2” +k2+m21|¢n,k|2
- [ &5 {1wk|¢0k|2+z(( Yk )lonk]. 02

where wi = k* +m?. Then the partition function, as a path integral over the field configu-

rations can be represented by
21\ 2
Z = C/ H Re¢p, xImey, k. exp { 5<<7> n? +W12<> ‘¢n,k’2:|' (9.24)
n>0,k
By the calculation similar to that in (b), we get

;_ CH[“’kH(Mn wi)] _cHeXp[ Bwi (n + )} (9.25)

n>0

This product gives the meaning to the formal expression [det(—(‘?2 + m2)} 12 with proper
regularization.

(d) Then consider the fermionic oscillator. The action is given by,

5= [arLetr) = [ ar (3)ir) + wiru). (9.26)

The antiperiodic boundary condition (7 + ) = —1(7) is crucial to expanding the fermion
into modes:
(1) = B2 Z 2™/ By, (9.27)
nez+1/2
Then the partition function can be evaluated to be

M0 5 ()

nezZ+1/2
oin 42 4 1)
= C(8) ne;[m (T +w) =) 11 ()
— C(B) cosh (L Bw) = C(8B) <eﬁw/2 + e—ﬂwﬂ), (9.28)

with the form of a two-level system, as expected.
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(e) Finally we consider the system of photons. The partition function is given by

Z :/DAMDch exp {/de?’m ( — %AM(‘?QA" — 6820)
— C(8)[det(=0)] "V - det(—0?), (9.29)

where the first determinant comes from the integral over the vector field A, while the second

one comes from the integral over the ghost fields. Therefore,
7 = C(B)[det(—0%)] >, (9.30)

which shows the contributions from the two physical polarizations of a photon. Here we see
the effect of the ghost fields of eliminating the additional two unphysical polarizations of a
vector field.



Chapter 10

Systematics of Renormalization

10.1 Omne-Loop structure of QED

(a) In this problem we show that any photon n-point amplitude with n an odd number
vanishes.

Now we evaluate explicitly the one-point photon amplitude and three-point photon am-
plitude at 1-loop level to check Furry’s theorem. The one-point amplitude at 1-loop level is
simply given by,

ir = (—ie) =0, (10.1)

/ d% —itr [y"(F +m)]
(2m)d k? —m?

and the three-point amplitude consists of two diagrams,

ir® = (_16)3/ (;’;d(—l){tr W;e—imﬁupil—mvkk+pl+i¢2—m}
+ tr [7" . }

1 1 1

A v
Eiptp—m Frp—m F-mlf 102

m

(b) Next we will show that the potential logarithmic divergences in photon four-point
diagrams cancel with each other. Since the divergence in this case does not depend on
external momenta, we will set all external momenta to be zero for simplicity. For the same
reason we will also set the fermion’s mass to be zero. Then the six diagrams contributing
the four-point amplitude can be evaluated as,

(Divergent part of il'***7)

- / (gjr];d (134 [tf VB Ky B K]+t [ R BB R+t [ R Ry Ry ]

+ tr (Y EY R TR R At [V R TRy R K]+t [v“%v"%v”%v”k}]. (10.3)

Now let’s focus on the first trace, which can be worked out explicitly, to be
tr [V Ry Fy R K] = 32kM KV KPR — 8K? (k“k”gpa + kPk7g" + EMET P + k”k’)g’“)

79
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+4(k*)*(g" 9" — 9" 9" + g"7g""). (10.4)

Then, we symmetrize the momentum factors according to k*k* — k*g* /4 and kFk"kPk® —
(k?)2(g"™ gP° + gHg*? + g"? g"?) /24. (Since the divergence can be at most logarithmic, so it
is safe to set spacetime dimension d = 4 at this stage.) Then the first trace term reduces to,

4
tr [V Ry B R ) = g(kQ)Q(g“”g”” —2¢"°g" + g g""). (10.5)

The other five terms can be easily got by permuting indices. Then it is straightforward to

see that the six terms sum to zero.

10.2 Renormalization of Yukawa theory

In this problem we study the pseudoscalar Yukawa Lagrangian,

L= 3(0,0)" — m*¢” + (i) — M)y — igdy v, (10.6)

where ¢ is a real scalar and v is a Dirac Fermion.

(a) Let’s figure out how the superficial degree of divergence D depends on the number of

external lines. From power counting, it’s easy to see that D can be represented by
D =4L — Py — 2P, (10.7)

where L is the no. of loops, Py is the no. of internal fermion lines, and P; is the no. of
internal scalar lines. We also note the following simple relations:

L=P;+P,—V+1,

2V = 2Ps + Ny,
V =2P;+ N;,.
Then we can deduce
D=4L— P —2P,=4(P;+ P, -V +1)— Py —2P, =4 — 3N; — N;,. (10.8)

Guided by this result, we can find all divergent amplitudes as follows.

___O___ D=2 —>—O—>— D=1

| N
! N
|

//O\\ D=0 \Q D=0

We note that we have ignored the vacuum diagram, which simply contributes an infinitely
large constant, the potentially divergent diagrams with odd number of external scalars are
also ignored, since they actually vanish. This result shows that the original theory cannot

be renormalized unless we including a new ¢* interaction, as

5L =—2¢". (10.9)
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(b) Now let us evaluate the divergent parts of all 1-loop diagrams of Yukawa theory. First
we consider the two point function of scalar. The one-loop contribution to this amplitude

is shown as follows.

The d = 4 pole of first two loop diagrams can be determined as

(10.10)

) —iA / ki im? 1
2 (2m)dk? —m?  (47)? €

_ o [ d% i i 51 4ig*(p? —2M?%) 1
Q = —(-) /(%)d“[k—ﬂﬂ F—p—Mm' 1" 4r)2 €

(10.11)
From this we find the divergent part of the counterterm to be
(Am? — 8¢°M?) 1 —4g% 1
Om ™~ —, 0y = —. 10.12
(4m)? € ¢ (4m)? € ( )

Then we come to the two point function of fermion, the 1-loop correction of which is given
by the following two diagrams.

From the pole of the loop diagram

ddk i i ig*(p —2M) 1
> =g’ b > ~ — 10.13
g /(zw)ﬂ F— M k—p2—_m @mnz ¢’ (1013)
we find the following counterterms:
—2¢°M 1 -g* 1
oy ~ ————— ~ 10.14
M (4m)2 €’ YT (472 e ( )

The following two diagrams contribute to 1-loop corrections to Yukawa coupling and ¢*
coupling, respectively.

~ N s N
\\\ ,” AN v A Y ,,
,< N s N ,
N N ’
\ \ N
- -—-- ro &
/ / 7 0N
\ 4 N
’\/\ // \\ // N
- S~ s N s N
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Since the divergent part of diagram is independent of external momenta, we can set all these
momenta to be zero. Then the loop diagram is

\ dk i i i g0 2
o ~— d 10.1
;T / 27) Cﬂ F— M7 }é M7 k:2 m? (47)? € (10.15)
T Ly / A ;1N\ 0N 1
N o~ 2 10.1
N 2 (27r)d<k2 - m2> (4m)2 e (10.16)
o < dk i 4 81g4 1
Py (=1 /(27r)d B [(7 k—M) ] T@m? e (10.17)

Note that there are 3 permutations for the first diagram and 6 permutations for the second
diagram. Then we can determine the divergent part of counterterm to be

2% 1 s B —dsgt 1
(4m)2 €’ A (4m)2 €’

8y~ (10.18)

10.3 Field-strength renormalization in ¢* theory

In this problem we evaluate the two-loop corrections to scalar’s two-point function in ¢*
theory in the massless limit. There are three diagrams contribute in total.

W VR

-/
The first diagram reads
(i / Ak dlg i i i
~ 6 2m)? (2m)4 k2 —m2 ¢®> —m? (p— k — q)*> — m?
S / d%kp dYqp i i i
6 ) @m)d 2m)TkE +m? qf +m? (pp — ki — qp)? + m?

X A%k 1 o r2-35)
6 / (27) k2 + m? (4m)4/? /0 dz m2 4+ x(1 — ) (pp — kg)?]?~%/?2
INTR2-4)
= —6(47T)d/2 /0 dx dy
y / dkp [2(1 — 2)]?2(1 — )T (3 - 4)/T(2 - 4)
@) [(k — ype)? +y(1 — )%+ (1 —y + i) m? &
ot . L3 —d)[z(1 —)]¥*72(1 — y)' =
] / dx dy

- 6(dm)? [y =yt + (1 =y + 5555)m?” "

(10.19)
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Now we take m? =0 and d =4 — ¢ — 4. Then we have

~ i\2 9 \1e i\2 5 1 9
2 12(47r)4r(—1 +e)pg) T+ = “2anPEl T log(p) + -+
N2 il ,
= S [? ~log(—p )+~-]. (10.20)

The second diagram actually vanishes in m — 0 limit. In fact,

. d ] —i ra-4<
SZ _ 0y /(d k 1 _ 10\ ( 7) xm — 0. (10.21)

2 2m)d k2 —m?2  2(4m)¥2 ml-d/2

The third diagram reads ip?d,. Therefore we can choose the counterterm d,, under the MS
scheme, to be

6y = —

AN L g (10.22)
12(4m)* | € °8 ' ‘

Thus the field strength counterterm receives a nonzero contribution at this order. In the

massless limit, it is
i\2 M?

5,0 = 2log ——. 10.23
2 12(477')429 Og _pg ( )

10.4 Asymptotic behavior of diagrams in ¢* theory

8Y AT X

In this problem we calculate the four point amplitude in ¢* theory to 2-loop order in
s — 00, t fixed, limit. The tree level result is simply —i\, and the 1-loop result can be easily
evaluated to be

o (—i)\)Q/ ki i i i _
M= " (%W%WA@—W—W+m—W—W+%—W—W]ﬁA

\2
~ 2(2;)2 [3(% —7+10g47r) —1ogs—logt—logu] — i)
i\2 i\2
=— 1 1 1 ~——1 10.24
2(47)2( og s + logt + logu) oL og s (10.24)

In the last step we take the limit s — oco. In this limit ¢ can be ignored and u ~ —s. We

see the divergent part of the counterterm coefficient §, at 1-loop order is

3N 1

O (47)2 €

(10.25)

Now we consider the two-loop correction.
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E - (_Z\)s {/ ((21:; kl(ps i k)Qr - _4(2)\;)01 [/01 dx[_x(rl@_;é])zcz/g 2
I 1

In the last line we only keep the divergent terms as ¢ — 0 and s — oo.

E: (—iN)? / ddkddqi i i
2 (2m)** k2 (ps = K)* ¢* (k — ps — q)°
W a1 i re-3g)
o2 /(%)dk2(ps—k)2[(4ﬂ)d/2/o )k~ pa

i 1 __Te-3) A%k 1
a 2(47r)d/2/o 4 [2(1 — x)]2 ‘”2/ (2m)? k3 (pse — kp)?[(ke — p3p)?]?~4/2

B i3 /ld F(2— X / d%p / /1 y S1-d/2 I'(4— %)

~20n)i? J, (1 - x>]2 d/2 TUZF AT - 9
iz3 P d/2

= ) /dxdydz P A4 d : (10.27)

where A = ys + 2p2p — (ypse + 2p3E)>.

Then we find
i1l 1.,
K ~ i (6—2 — —logs+ - log s>. (10.28)

The same result for the third diagram. Then we have

1/\3 3 5
E E K - ?logs—i- Elog s). (10.29)

Now we come to the counterterm. The fourth diagram reads

(M) (—i6y) dk i i
Q-5 e
3 1( ! 3( —glogs+ilog25+~~>

" 2(4m)? € (4m)? 8
3N 11 1

~ S 2 log? ) 10.
(471’)4<€2 5 og s+ g log™s (10.30)

The same result for the fifth diagram. Then we have

E+E+E+E+§N%(%—%log%). (10.31)
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So much for the s-channel. The ¢ and u-channel results can be obtained by replacing s with
t and u respectively. In the limit s — oo and t-fixed, we can simply ignore ¢ and treating

u ~ —s, then the total 2-loop correction in this limit is

100 M ~ — log® s. (10.32)

2(4m)*

The double pole 1/¢? has been absorbed by 4.
In summary, we have the following asymptotic expression for the 4-point amplitude to
2-loop order in the s — oo and t-fixed limit:
i\2 3iN3

logs — ————log®s+ - . 10.
L 0g s 2(an)] og” s+ (10.33)

iM=—i\ —
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Chapter 11

Renormalization and Symmetry

11.1 Spin-wave theory
(a) Firstly we prove the following formula:
(T 60 — (P@-DO), (11.1)

Where D(z) = (T'¢(x)¢(0)) is the time-ordered correlation of two scalars. The left hand
side of this equation can be represented by path integral, as

/ D6 e 0 exp i [ dtadly Lo(a) Do~ y)oy)| (11.2)

This expression precisely has the form Z[J]/Z[0], with J(y) = é(y — x) — 6(0). Thus we
have

Z[J])Z]0] = —% /ddxddy J(z)D(z —y)J(y) = exp [D(z) — D(0)], (11.3)

which is just the right hand side of the formula.

(b) The operator being translational invariant O[¢(z)] = O[é(x) — a] can depend on ¢
only through V,¢. And the only relevant/marginal Lorentz-invariant operator satisfying
this condition is 5 p(V¢)?.

(c) From now on we use bold x to denote coordinate and italic z to denote its length,
x = |x|. We can use the result in (a) to evaluate (s(x)s*(0)), as

(5(x)s*(0)) = A%(e!¢™) =190y = A2cP)=D(O) (11.4)

Note that the correlation function

1 [ d%g 1
D(x) = _/ b elkex (11.5)
E




88

Chapter 11. Renormalization and Symmetry

is the solution to the following equation:
— oV D(x —y) = 69D (x —y). (11.6)

Since D(z) is a function of the length only, namely D(x) = D(x), thus we have

p D 4,0 T+ 9) 6(x)
B xd—1%<x %D(a:)>  dmd/? pd-lT (1L7)
Then it’s easy to find
L+ %) 1 for d # 2
D) = § dd A p | (118)
1
— —logx, for d =2.
2mp

Then we have

Dimension d | d =1 d=2 d=3 d=4
1 1 1 1
D(z) ——x ——logx
2p 27p dmpr  4An?px?
<SS*> ~ e ~ 1/x27rp ~ el/w ~ 61/:1:2

Since p — 0 when d — 2, the correlation function (ss*) in this case is independent of length

x.

11.2 A zeroth-order natural relation
We study N = 2 linear sigma model coupled to fermions:
L= 50,0'0"¢" + 510" 0" — TA0'D)* + (i) — gb(6' + 1’80, (11.9)

with ¢' a two-component field, i = 1, 2.

(a) Now, under the following transformation:
¢ — ¢ cosa — ¢*sina; »* — ¢'sina + ¢? cos a; v — e’i‘WQ/Qw, (11.10)

the first three terms involving ¢' only keep invariant. The fourth term, as the kinetic term
of a chiral fermion, is also unaffected by this transformation. Thus, to show the whole
Lagrangian is invariant, we only need to check the last term, and this is really the case:

— g(" + i)Y
= — gbe 2 [(¢' cosa — ¢*sina) +i7°(¢' sina + ¢ cos a)| ey
= — ghe 2 (8! +in?¢)e T 2 = —gih(¢" + 177 9?) . (11.11)
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(b) Now let ¢ acquire a vacuum expectation value v, which equals to /u?/A classically.

Then, in terms of new variables ¢ = (v + o(z), 7(z)), the Lagrangian reads

L=210,0)74+0,n) - pc® — tA(o* + 7
— 20?1 = Mo — hvor? + 4(id — gu)v — g (o + iy’ m)i. (11.12)

That is, the fermion acquire a mass my = gv.

(c) Now we calculate the radiative corrections to the mass relation m; = gv. The renor-
malization conditions we need are as follows.

r-—-@ " = ¢ at@=0, pr=pr=md (11.13)

OT = 0. (11.14)

These two conditions fixed g and v so that they receive no radiative corrections. Then we
want to show that the mass of the fermion my receives finite radiative correction at 1-loop.
Since the tadpole diagrams of ¢ sum to zero by the renormalization condition above, the
fermion’s self-energy receive nonzero contributions from the following three diagrams:

_>_Q_>_ //\\\
- — QR

The first two 1-loop diagrams can be evaluated as

e [ A% i o [Tty
=" | G e = e, A

[, e
__ Y ~\e75)
i ), 4 gt v

L2l
= (Er)Q/ dz (zp +my) %—7+10g47r—10gA1} (11.15)
0

o, A% i 51, d% 1xxp—mf
0=¢f et F—m, G—pp Y / <2w>d/o R (CIWE

@ 1 Te-4)
19
= (47r)d/2/0 dx Az—d/g (zp —my)

2

22

= o /01 da (ap — my) [% _7+10g47r—10gA2] (11.16)
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This leads to

- 1
_ Y9 2 _ _1 Ba
(e) + (f) = (in)? /0 dz {2951;?[ = — vy +logdr — 5 log(A1Ay)| + mylog A, } (11.17)

We see that the correction to the fermions mass m; from these two diagrams is finite. Be-

sides, the third diagram, namely the counterterm, contributes the mass’ correction through

dgv. The the total correction to my is finite only when d, is finite. Let us check this by

means of the first renormalization condition (11.13) stated above. The 1-loop contributions
(11.13) are as follows.

LA

(2) = (_ig)zg/ ((;jrl;d ¥ —imf75% —imf (k — p)i2 — 2
- [t it o~ G e
~igy’ / ((;jrk)/d /01 Ao 77 . A2 (f;;5/2 /oldfoff_dE)
_ (9;)52 / "o [2 5+ logdn —log A (11.18)
(b) = 93/ (iﬁdv ¥ imf K imf 5(’6‘—29)12 — 2
=g / (ddl; (132 (—k:@ Tf()(k (k; @Z;) Y 375/ (gjr];d (k? —m3) ((kl— P~ 242)

= 193’75/ ddk:/ /1 dx 1 - _9375 /1 dx —F(Q _ %)
(277') (k/? AQ)Q (47T>d/2 0 A2_d/2

2

1
— ; / da [%—’y—i—logllﬁ—logAQ] (11.19)
0

: . d% o i i i
(©) = (~ig)g(~2ix0) / o F e PR P
= (wty)p+my
/dx/ k/2 A )3

_292)\1)7 / /1” a:—i—y]ﬁ—i-mf

= dig°\vy®

(11.20)
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: : dk i i i
(d) = (_19)9(_21)‘7))/ (2m)d f — mfﬁy (k—p)? —2u?(k—p)?

A4k’ (- y)p+my
— 4ig?
i [ o [ / e
2 T+ y)p+
_ 29 Am / dx/ y)p ™ (11.21)

3

Thus,

(8) + (b) + (¢) + (d) = (ZZ;/O dx[gQIOgi—l—l—él)\/o mdyz—;‘]. (11.22)

11.3 The Gross-Neveu model

The Gross-Neveu Model is a theory of fermions in 1 4+ 1 dimensional spacetime:
L = Vi + 59 (i), (11.23)

with ¢ = 1,---, N. The gamma matrices are taken as 7° = 02, v! = io!, where o' is the

familiar Pauli matrices. We also define v° = 7%+ = o3,

(a) The theory is invariant under the transformation v; — ;. It is straightforward to
check this. We note that:

i = 9[y° = Pl = =gy, (11.24)
thus:
L= — 01070 + 597 (=07 i)’
= Yil@v; + 5 9% (i), (11.25)

However, a mass term will transform as m;y;y; — —milﬁiwi, thus a theory respecting this
chiral symmetry does not allow such a mass term.

(b) The superficial renormalizability of the theory (by power counting) is obvious since
lg] = 0.

(c) The model can be phrased in another equivalent way:

— / DYDY Do exp {i / Pz (Piidiy; — #02 — awiwi)l. (11.26)

This can be justified by integrating out o,

/Daexp {i/d%(—ﬁcﬂ — awim)} = Nexp {i/d% L (i) ] (11.27)

which recovers the following path integral:

= [Divven i [ o it + 1) (11.28
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(d) We can also integrate out the fermions v; to get the effective potential for the auxiliary
field o

Jripsess i [ @oGivn - obuw)| = [detto - o))" = [det(o? + 0]

= exp [/ (gjrl;Nlog(—k%ra?)]. (11.29)

The integral is divergent, which should be regularized. We use the dimensional regulariza-
tion:

dk s o dkp [0 1
/ <2w>dN10g<’“E”)‘N/ (2 [a_ak%MZLZO

L(=d/2)(o*)"*

= —IN—— (11.30)
Now we set d = 2 — € and send € — 0,
d%kp s 5. iNo? [ 2 )
——Nlog(ky +0°) = — — 7y +logdnr —logo”+1|. (11.31)
(2m)d Ar \ €
Thus the effective potential is
1 , N, o?
Ve (o) = @0 + ° <10g? - 1) (11.32)
by modified minimal subtraction.
(e) Now we minimize the effective potential:
A 1 N o?
0= = — —olog — 11.33

and find nonzero vacuum expectation values (¢) = +ue~™9"N The dependence of this result

on the renormalization condition is totally in the dependence on the subtraction point u.

(f) It is well-known that the loop expansion is equivalent to the expansion in powers
of h in generic perturbation theory around a classical vacuum. This is true because the

iS/hThat is, h appears as

integrand of the partition function can be put into the form of e
an overall coefficient of the action. In our case, we see that the overall factor NV plays the
same role. Thus by the same argument, we conclude that the loop expansion is equivalent
to the expansion in powers of 1/N. More details can be found in Section III.3 of [4] and

Chapter 8 “1/N” of [5].



Chapter 12

The Renormalization Group

12.1 Beta Function in Yukawa Theory

In this problem we calculate the 1-loop beta functions in Yukawa theory. All needed

ingredients have been given in Problem 10.2 Here we list the needed counterterms:

Sy =— g <3 ~log MQ); (12.1)
2(4m2) \ e

0p = — (ii; (% — log M2>; (12.2)

5y = (4f)2 (% —log MQ); (12.3)

Sy = % (% —log M2>. (12.4)

Here A is the UV cutoff and M is the renormalization scale. Then, the beta functions to

lowest order are given by

0 5¢°
0 32 + 8\g? — 48¢*
8, = Ma—M( N 2/\05¢> _ (4;(:)2 g (12.6)

12.2 Beta Function of the Gross-Neveu Model
We evaluate the 8 function of the 2-dimensional Gross-Neveu model with the Lagrangian
L =i + +9° (i), (i=1,---,N) (12.7)
to 1-loop order. The Feynman rules can be easily worked out to be

ia—z—jﬁz <i> a%‘

K/ s
93
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ko 16
= ig2(5ij5kg65a€5,y + 0i001€50€8)
ia JB
Now consider the two-point function Fg) (p). The one-loop correction to Fg) (p) comes from

the following two diagrams:

It is easy to see the loop diagram contains a factor of [ d%k tr [}é—l], which is zero un-
der dimensional regularization. Thus the wave function renormalization factor receives no
contribution at 1-loop level, namely 4, = 0.

Then we turn to the 4-point function I’Z(.?,)M. There are three diagrams in total, namely,

k 05
! kry 05 05 k~y
O O XK
i i3 (Xe’ JB i iB
(a) (b) (c)

We calculate them in turn. The first one:

. d’k i
(a) = (192)2 / W(dmngkfeé'ye'y’&’ + 5n€5mk656’67/7) (%)5’/5’

i
X (&'j&mnﬁg/a/éﬁa -+ 5in5jm6,3’a€,8a/)<%> »
oy

4 1 m ddk 1
= 9" (=2 + Dbduesscsn + F0udin(MaCn)en) [ Goags (129

The second diagram reads:

1 d?k i
(b) - 5 ’ (192)2 / W<5m]’5n4655’655/ + 5m£6nj655/656l) <%>ﬁ'o¢’

—~

i
X (5im6kn€a’ae'y"y + 5in5km€’y’a€o¢/’y) (7)6/ ,
- v

4 d
g Ak 1
=-5 <5ij5ké(7“)5’v<’7/t)ﬁoc + 5¢e5jn(7“)5a(%)ﬁv> / (27r)dﬁ (12.9)
The third diagram:
. d% i
(C) = (192)2 / W((Smjénkeﬁﬁ’evl"/ + 5mn5jk€7//31667> (%)B/a/

1
X (5im5€n€55/€a/a —+ 5i€5mn€a’5’€§a) <%> o
Y
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dk 1
=g (%5z‘j5kz(7“)6w(%)ﬁa +(2- 2N)5w5jk€,8v€6a) / 2 (12.10)
Summing up the three diagrams and using dimensional regularization with d = 2 — €, we
get
4 0;;0 000 A% 1
— 29" (N — 1)(0:j0ke€51€50 + 0itdjk€p€50) 2niRe
2(N — 1)ig* 2

~ (4—7_‘_)9?(5ij5k€€676,3a + 5ig5jk65765a). (12.11)

Only the divergent terms are kept in the last expression, from which we can read the

counterterm

5, = —W(% “log M2>. (12.12)
Thus the § function is
_ 0 _ (V-1)(e?)?
Bl = Mo(=d)) = (12.13)
and ,
Blg) = - DI (12.14)

27
It is interesting to see that the 1-loop [ function vanishes for N = 1. This is because we
have the Fierz identity 2(y) (1)) = —(¥y*1)(y,1), and the Gross-Neveu model in this

case is equivalent to massless Thirring model, which is known to have vanishing  function.

12.3 Asymptotic Symmetry

In this problem we study a bi-scalar model, given by the following Lagrangian:
L= 5((0u01)" + (0u02)") — (1 + 02) — 6103 (12.15)

a) First, we calculate the 1-loop beta functions ) and 3,. The relevant 1-loop diagrams
(a) )
for calculating (3, are:

T 0 e BB X

The relevant diagrams for calculating 3, are:

Q0 A X
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Here the single line represents ¢; and double line represents ¢,. Since the divergent parts
of these diagrams are all independent of external momenta, we can therefore simply ignore
them. Then it’s easy to evaluate them, as follows.

_- 2 4 . . . 2
Ei: (—i\) / dk:LLN iA 27 (12.16)
2 (27r)4 k2 k?  2(4m)? €

The t-channel and u-channel give the same result. Thus we can determine 9, to be
9N2 + p% 2
6(4m)? €

Sy ~ (12.18)

On the other hand,

—iA)( —1p/3)/ d'k i i i\p 2
LT 12.1
;i ;i (2m)* k2 k2 6(4m)? €’ (12.19)
dkoii i 2
s~ 5 —. 12.2
>©< @\ ip/3) / Cr e~ On ¢ (12.20)
3\p + 2p% 2

3(4m?) €
It’s easy to see that field strengths for both ¢; and ¢5 receives no contributions from 1-loop

Then we have

5, ~ (12.21)

diagrams. Thus the 1-loop beta functions can be evaluated as
doy 3N+ p?/3

Br=—n Q- @ (12.22)
=g = P 1229
(b) Now we derive the renormalization equation for p/\:
e (5) = 38— B = i~ o/ + (o) 5] (12.24)
Then it is easy to see that p/\ =1 is an IR fixed point.
(c) In 4 — e dimensions, the 8 functions for p and X are shifted as
Br=—eA+ %; (12.25)
By = —ep+ %. (12.26)

But it is easy to show that the terms containing e cancel out in the  function for p/\, and
the result is the same as (12.24). This is true because p/\ still remains dimensionless in
4 — e dimensions. Therefore we conclude that there are three fixed points of the RG flow for
p/X at 0, 1, and 3. We illustrate this in the diagram of RG flow in the p-A plane, with the
deviation of dimension ¢ = 0.01, in Figure 12.1.
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0.4

0.2

W

0.0

O. 0.2 0.4 0.6 0.8 1.0

Figure 12.1: The RG flow of the theory (12.15) in 4 — € dimensions with € = 0.01. Three
nontrivial fixed points are shown by blue dots.
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Chapter 13

Critical Exponents and Scalar Field

Theory

13.1 Correlation-to-scaling exponent

In this problem we consider the effect of the deviation of the coupling A from its fixed
point to the two-point correlation function G(M,t) in d = 4 — € dimensions. Symbolically,

we can always write

0G(M,t <

M oA, (13.1)
0N f5en,

where ) is the running coupling, defined to be the solution of the following renormalization

G(M,t) = G.(M,t) +

group equation: -

- 2

d 5 2060V (13.2)
dlog i d—2+2y()\)

As the first step, let us expand the 5 function of A around the fixed point, as

B = A0+ S5 (-2 + 0= AP

= WA= A) +O((A = \)). (13.3)

Then the renormalization group equation reads

d - 2w(A — A,) wr <
A~ = A=), 13.4
dlog d—242v(\) I6] ( ) (13.4)

where $ and v on the right hand side are critical exponents, which in our case are defined
to be

6_d—2+27(/\*) L 1
Cd2— (M) 2= 9,(N)

Don’t confuse the critical exponent S with the § function. Now, from this equation we can

solve the running coupling \ to be

A=+ (Mo) = A.) (%)Wﬂ. (13.5)

99
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Now let po be the scale at which the bare coupling is defined. Then we get

ON o< (A — A )P, (13.6)

13.2 The exponent 7

We have found the counterterm d to O(A?) with M S scheme in Problem 10.3, to be

5y = - L g ar (13.7)
27 12(4m)t e ©8 ' '

Then the anomalous dimension « to O(\?) is given by

1 0 A2

— M - .
i %7 = Ty

= Mo (13.8)

This result can be easily generalized to the O(N)-symmetric ¢* theory, by replacing the
Feynman rule of the ¢* coupling —i\ with

_21)\(52]5kﬂ 4 5ik5j€ 4 5@'65]%))
which is equivalent to multiplying the diagram (10.19) by the following factor:

and the anomalous dimension (13.8) obtained above should be multiplied by 12(N + 2),

which leads to )

7:<N+2>(4)\T)4’ (13.10)

which is the same as (13.47) of Peskin&Schroeder.

13.3 The CPYN model

(a) The Lagrangian of the C'PY model can be written as
1 *
J J

with z; (j = 1,--- N +1) the components of a vector in (N + 1) dimensional complex space,

2), (13.11)

subject to the constraint

D Iyl =1 (13.12)
J

and the identification

(eiazla T ,€iaZN+1) ~ (Zh T aZN+1>' (13-13)
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Now we prove that the Lagrangian given above is invariant under the following local trans-

formation:
zi(x) — @ z;(x), (13.14)

as,
9L~ (02| + |z oe )
= (\8sz|2 + |0ual* 4 2Re( — i(aua)z;auzj»
— (|z;-‘8#zj\2 + |0ual* 4+ 2Re( — i(ﬁﬂa)ziz;‘zjauzjn
= ¢°L. (13.15)

Then we show that the nonlinear ¢ model with n = 3 is equivalent to the CPY model
with N = 1. To see this, we substitute n’ = z*o'z into the Lagrangian of the nonlinear

sigma model, £ = 55|0,n'[*, to get

1 4 )
L= =(0.2")0'2z+ 200,z

2

A -2(8Mz*)(8“z)z*z + (0,2)%2* + (8u2*)222]

= oo _2(@2*)(0“2) + (2*0,2 + z@,,z*)2 - 2(2’*0”2)(28“2’*)]

= oo :2(@2*)(8#2) + [0,("2)? - 2(,2*8#2)(28“2*)]. (13.16)

Then after a proper normalization of the field z, it is straightforward to see that the La-

grangian above reduces to

1 *
L= ?(@z\? pYp 8Hz\2), (13.17)

which is indeed the C'P' model.

(b) The Lagrangian (13.11) can be obtained by the following Lagrangian with a gauge field
A, and a Lagrange multiplier which expresses the local gauge symmetry and the constraint

explicitly:
1
L= ?(|Du2j|2—/\(|zj|2— 1)>7 (13.18)

with D, = 0, +iA,. Now let us verify this by functionally integrating out the gauge field
A, as well as the Lagrange multiplier A to get

1
Z :/DinDAuD)\ exp b /de (IDuzl? = A1 - 1))1
1
:/DzziDAué(\sz — 1) exp [?/d% |Duzj|2]
i . «
Z/DZZiDAu5(|Zj|2 — 1) exp L?/d% (A#A“ + 21A%(0,2] ) 2 + |8sz|2>]

i 2
:N/D22i6(|zj|2 — 1) exp {? /d2m <|8sz|2 - |z;-‘8uzj|> } (13.19)
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(c) On the other hand one can also integrate out z; field in the Lagrangian (13.18), as

Z :/DziDAMD/\ exp {%/d% <|Duzj|2 —A(|3]* - 1))}
g
:/DAMD)\ exp {— N tr log(—D? — \) + é/dzx )\} (13.20)

We assume that the expectation values for A, and A are constants. Then the exponent can

be evaluated by means of dimensional regularization, as

iS= — Ntr log(—Dz—)\)—i-é/d%)\

= —N/ A% log (k* + A AM—A)+iA Ve
(2m)4 g 9°

N M? 1
=il = —(log —— 1>A—A2 v, 13.21
R TRATI RN P
where V) = [ d2z, and we have used the MS scheme to subtract the divergence. Now we
can minimize the quantity in the square bracket in the last line to get

A, =0, A= M?exp ( - E%). (13.22)
(d) The meaning of the effective action S is most easily seen from its diagrammatic rep-
resentations. For instance, at the 1-loop level, we know that the logarithmic terms in the
effective action is simply the sum of a series of 1-loop diagrams with n > 0 external legs,
where the number of external legs n is simply the power of corresponding fields in the expan-
sion of S. Therefore, to the second order in A and in A, the effective action is represented

precisely by the following set of diagrams,

O O b

where the dashed lines represent A, curved lines represent A,, and the internal loop are
z field. Then it is straightforward to see that the correct kinetic terms for A and A, are
generated from these diagrams. That is, the gauge field A, becomes dynamical due to
quantum corrections. The gauge invariance of the resulted kinetic term F),, F'** can also be

justified by explicit calculation as was done in Problem 9.1.



Final Project 11
The Coleman-Weinberg Potential

In this final project, we work out some properties of Coleman-Weinberg model, illustrat-
ing basic techniques of the renormalization group. The original paper [6] by S. Coleman
and E. Weinberg is always a good read, while a recent and very insightful treatment of the
model can be found in [7].

Simply put, the Coleman-Weinberg model is a theory of scalar electrodynamics, described
by the Lagrangian,

L= —5FuF" + (D) (D'¢) — m*elo — 3 (67¢)*, (13.23)

with ¢ a complex scalar and D, ¢ = (0, +ieA,)¢.

(a) Consider the case of spontaneous breaking of the U(1) gauge symmetry ¢(z) —
e @) ¢(z), caused by a negative squared mass, namely m? = —p? < 0. The scalar then
acquires a nonzero vacuum expectation value (VEV) ¢g = 1/ {|¢|?). We split this VEV out

of the scalar field, namely,

1 .
¢ = ¢o+ E [O’(:E) + 17r(m)], (13.24)

with the new field o(x) and 7(x) being real. At the tree level, it is easy to find ¢g = 1/3u?/A
by minimize the scalar potential V(¢) = —u?¢pT¢ + = (¢T¢) We also introduce v = v/2¢,
for convenience. Then, rewrite the Lagrangian in terms of these new field variables, we get,

L=—1(F.)+ 2(0,0)* + $(0,7)° + Le*v®4,A" — L(2p°)0”
— 2 (7' + o' + 2107 + dvno + dvo®) + ev A, O T
+ eA (o0t — ndlo) + L A, AM (7 + 0% + 2v0). (13.25)

Then we see that the vector field A, acquires a mass, equal to my = ev at the classical
level.

(b) Now we calculate the 1-loop effective potential of the model. We know that 1-loop
correction of the effective Lagrangian is given by,

5L
0o

AL = = log det {—

} + oL, (13.26)
2 o
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where ¢ is the fluctuating fields and 6L denotes counterterms.

Let the background value of the complex scalar be ¢.. By the assumption of Poincaré
symmetry, ¢, must be a constant. For the same reason, the background value of the vector
field A, must vanish. In addition, we can set ¢ to be real without loss of generality. Then

we have,
¢(x) = g1 + p1() +ipa(),

where ¢1(x), pa2(x), together with A,(z), now serve as fluctuating fields. Expanding the
Lagrangian around the background fields and keeping terms quadratic in fluctuating fields
only, we get,

L=- %FWF“V + |(6M +ieA,)(da + 1 + i¢2)|2

—m?*|¢a + o1 + 1902‘2 — 2|pa + o1 + iQ02|4
= LA [g" (0% +2620%) — 0" "] A, + L1 (— 07 — m? — AQ2)
+ 502( = & —m® — 308) 2 — 2000 A0 0y + - -+ (13.27)

13

where “ --” denotes terms other than being quadratic in fluctuating fields. Now we impose
the Landau gauge condition 9,A* = 0 to the Lagrangian, which removes the off-diagonal
term —2e¢pqA,0"p,. Then, according to (13.26), the 1-loop effective Lagrangian can be

evaluated as,
5L
0o

L log det { —

5 } = % {log det ( — (8% + 2¢°¢3) + 0"9")
o

+ log det (0 + m® + A¢Z) + log det (9° + m* + %Qﬁl)}

i d’k 2 2 12\3
= 5/(27T) {tr log(—k* + 2e“¢3)

+ tr log(—k* + m* + \¢?%) + tr log(—k* +m? + %qbgl)]

_ —QF(EI_);/)Q |:3(262 DY 4 (m® + A0 + (m® + So2)Y 2} (13.28)

In the second equality we use the following identity,

det(A + AB) = \" Y (\ + BA), (13.29)

where A and B are matrices of n x 1 and 1 X n, respectively, A is an arbitrary complex
number and [ is the n x n identity matrix. In our case, this gives,

det ( — (0% + 2627 + @“31’) = —2e%¢%4 (0% + 2e2¢2)°. (13.30)

Then the second equality follows up to an irrelevant constant term. The third equality
makes use of the trick in (11.72) of P&S. Then, for d = 4 — € and € — 0, we have,

i 5L 1
_1 N - = 2 2 12\2 A—l 2 2 2
2 Ogdet[ wwLZO 4(47)? [3( ¢“0a)” (& — log(2¢°03)
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+(m® + 203)* (A — log(m? + A\¢2))
+ (m?* + %éil)Q(A — log(m? + %Qﬁ))} 5 (13.31)

where we define A = 2 — v +log 4w + £ for brevity.

Now, with M S scheme, we can determine the counterterms in (13.26) to be

2
P + log4m — log Mz] (3(262 22+ (m? 4+ Xp4)? + (m* + %615(2;1)2)
(13.32)

where M is the renormalization scale. Now the effective potential follows directly from
(13.26), (13.31) and (13.32),

A 1 M3
o242 N4 2 122 =
Vanlgal =m0+ b~ g [3(2e (108 30007 +5)
M2 3 M2 3
2 212 e 2 ) A 2)\2 - _
+ (m® + Ad) (10g—m2+)\¢zl+ 2) +(m® + 50%) <logm2+%¢a+ 2)} (13.33)

(c) Now taking the mass parameter pu? = —m? = 0, then the effective potential (13.33)

becomes
V [¢ ] )\¢4 + 12 4¢4 (1 262 21 3> ‘l‘ 10 )\2¢4 <1 )\¢gl 3)
wt[Da] = — e og——= — — )+ — 0g —o — —
LO = g P T Y ()2 I\ T2 T ) T g APl e T
Ay 3etdd 2e2¢% 3
~ 2 o (] o _ —). 13.34
6 %0t ) (Og M2 2 (13.34)

In the second line we use the fact that A is of the order e* to drop the A% term. Then the

minimal point of this effective potential can be easily worked out to be,

M2 872\
T ) (13.35)

2 _
9 = 9¢2 P (1  9¢t
As X\ ~ et we see that ¢ is of the same order with e !M. Thus the effective potential

remains valid at this level of perturbation theory.

(d) We plot the effective potential as a function of ¢ in Figure (13.1). The purple curve
with m? = 5 x 107" M? corresponds the case with no spontaneous symmetry breaking. The
blue curve shows that as m? goes to 0 from above, new local minima is formed. Finally, the
orange and red curves correspond to broken symmetry, and in the case of the orange curve
with m? = 0, the symmetry is dynamically broken.

(e) Now we calculate § functions of the Coleman-Weinberg model to 1-loop level at high
energies, where we can send the mass parameter m? to zero. It is convenient to work in the
Feynman gauge £ = 1. Then the relevant Feynman rules can be read from the Lagrangian
(13.25) to be,
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Figure 13.1: The effective potential Vg as a function of ¢, with different values of m?/M? =
5x 1077, 2.4 x 1077, 0 and —1 x 1077 from top to bottom, respectively.
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We first find the 1-loop wave function renormalization. For o field, there is only one
diagram with nonzero contribution,

p—k

—

which reads,

d% i —i 2ie?p? 2
/ P e e e et (13.36)

Then we have,

S = iy (? - M2>, (13.37)
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and it is straightforward to see that ¢, = d,. For photon’s wave function renormalization
(vacuum polarization), we need to evaluate the following three diagrams,

AL [T k)
¢ [ G w2 e [ T

—(pQUW - p,upu)a (1338)

which gives,

e? 2

04 =~ (= —log %), 13.39
Then we turn to the 1-loop corrections to couplings. For scalar self-coupling A\, we
consider the 1-loop corrections to o term in the Lagrangian. There are six types of diagrams

contributing, listed as follows, and we label them by (a) to (f) from left to right,

For each type there are several different permutations of internal lines giving identical result,
or more concretely, 3 permutations for each of the first three types, and 6 permutations for
each of the last three types. Now we evaluate them in turn. We set all external momenta
to zero to simplify the calculation. Then,

(a) = (_;A)Q /gil;d <$>2N%% (13.40)
)= 5 / ((Qijr];d (o) ~ 181(:\;)2%’ (1341)
(c) = (2132)2 / (gi];d(;—;ymm“”fv (ii;;%, (13.42)
W= [ () i ma
(e) = (2ie?)e? / (jj:;d%(;—;)z(—kuw) . if;% (13.44)

()= 64/ (g:;:d (%)2(;;)2(_’“““)2 - (i)?%’ (18.45)
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Then multiplying (a)~(c) by 3 and (d)~(f) by 6, we find

5A2/3 — 2Xe + 1864 2
(47)? €’

oy =

(13.46)

Finally we consider the 1-loop corrections to e. For this purpose we calculate 1-loop diagrams

with three external lines with 1 A, 1 o and 1 7 respectively, shown as follows, labeled again

by (a) to (d) from left to right,

LAk

Now we calculate them in turn.

0= [ b () = ke - 2y

o [ / L 4al2 = 2)p = KPR = (1= 2)p)

(2m) [k + (1 — z)p?

dr.t 1 _/21_ w_9(9 _ R RAY AT
i [ K [x>p (2= 2)(p- )k

(2m)d E? + z(1 — x)p?)?
L[4t (- 2) = G2 o)k
B / (2m)? /0 4 (k2 + z(1 — 2)p*]

2e3 2
~ (4m)? €

0= Z2) f () e =

—p",

d%% i —i 3ed 2
© = (@) = e2e®) [ G ()~ —
Summing the four diagrams, we find that
2e3 /2
0 = = —log M?).
(47)2 ( e 8 )
Now we are ready to calculate § functions,
) 3
— 0o +0:)) = —
b= Mg (=045 (5*‘+ +69) = g5
0 5A2 — 18\e? + H4e?
P = Mgz (= 0n+20) = 2472

(13.47)
(13.48)

(13.49)

(13.50)

(13.51)

(13.52)

The trajectory of renormalization group flows generated from these § functions are shown

in Figure 13.2.
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Figure 13.2: The renormalization group flow of Coleman-Weinberg model.

(f) The effective potential obtained in (c) is not a solution to the renormalization group
equation, since it is only a first order result in perturbation expansion. However, it is possible
to find an effective potential as a solution to the RG equation, with the result in (c) serving
as a sort of “initial condition”. The effective potential obtained in this way is said to be RG
improved.

The Callan-Symansik equation for the effective potential reads

< 0 0 0 0

MO_M + 5,\5 + 5e$ - 7¢¢c1%) Vea(@e, X\, €5 M) = 0. (13.53)

The solution to this equation is well known, that is, the dependence of the sliding energy
scale M is described totally by running parameters,

‘/;H(¢Cl7 /\7 €; M) = %H(QBCI(M,)u S\(M/>7 é<M/), M/), (1354)

where barred quantities satisfy

o oe . - 0da -
Ma_M = 6)\(/\,6), Ma—M = ﬁe()\,€>, M M = —7¢()\,€)¢Cl. (1355)

The RG-improved effective potential should be such that when expanded in terms of coupling

constants A and e, it will recover the result in (c) at the given order. For simplicity here
we work under the assumption that A ~ e*, so that all terms of higher orders of coupling
constants than X and e? can be ignored. In this case, the perturbative calculation in (c)
gives

A 3etod 2e >

_ a4 cd <
Vet = G0 )2 (1o M 2)' (13.56)
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Now we claim that the RG-improved edition of this result reads

Ao, 3etel , 3
= A (log 26 ——). 13.
Vo G o T (17)? (og e - (13.57)

To see this, we firstly solve the renormalization group equations (13.55),

MMy =& (% + % log ]]\é > (13.58)
_ N e

) = 3w log (01731 (13.59)
Ga(M') = 6 ( ]]\é )26 o (13.60)

where the unbarred quantities A\, e and ¢ are evaluated at scale M. Now we substitute
these results back into the RG-improved effective potential (13.57) and expand in terms of
coupling constants. Then it is straightforward to see that the result recovers (13.56). To see
the spontaneous symmetry breaking still occurs, we note that the running coupling A(M’)
flows to negative value rapidly for small M’ = ¢, while e(M’) changes mildly along the
ba scale, as can be seen directly from Figure 13.2. Therefore the the coefficient before ¢?
is negative for small ¢, and positive for large ¢.. As a consequence, the minimum of this
effective potential should be away from ¢ = 0, namely the U(1) symmetry is spontaneously
broken.

To find the scalar mass m,, in this case (with g = 0), we calculate the second derivative
of the effective potential V.g with respect to ¢.. Since the renormalization scale M can
be arbitrarily chosen, we set it to be M? = 2e*(¢?) to simplify the calculation. Then the
vanishing of the first derivative of Vig at ¢ = (da) implies that A = 9e?/87%. Insert this
back to Vg in (13.56), we find that

364 4l 2 1
g = (] od ). 13.61
Vo= T (1on 1 3 (13.61)

Then, taking the second derivative of this expression with respect to ¢., we get the scalar

mass m2 = 3e(¢?) /47 = 3e*v? /872, Recall that the gauge boson’s mass m, is given by
ma = e?v? at the leading order, thus we conclude that m?/m? = 3e?/87? at the leading
order in €%

(g) Now we consider the effect of finite mass, by adding a positive quadratic term into the
effective potential (13.56). For simplicity we still work with A\ = 9e¢?/87%, which is always
attainable without tuning. Then the effective potential reads,

3etol 2203 1
242 o a L
Ve =m0+ s (log =5 - ). (13.62)

in which the mass m, is not identical to the bare mass parameter appeared in the classical
Lagrangian, but has include 1-loop correction. As m, increases from zero, the energy of
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symmetry breaking vacuum at (¢q) # 0 also increases, until it reaches zero when m =
m. > 0, and has the same vacuum energy with the symmetric vacuum (¢.) = 0. Then for
m > m., there will be no stable symmetry breaking vacuum.

Using the effective potential above, we can find the position of the symmetry breaking

vacuum by solving the equation 0Vyg/0de = 0, with the following solution,

“bcl:(ﬁv

M? (47)*m?2

2 r

0 = Gex OXP {W( - 3—M>] (13.63)

in which W(z) is the Lambert W function, defined as the solution of z = W(2)e"W®*). Then
we can use the condition Vig(¢,) = 0 to determine m, to be,

5  3e?M?

C = 3271'261/2’ (1364)

m

where the e in denominator is 2.718... and should not be confused with electric charge e.

Now we can evaluate the mass ratio m2/m% = $V/i(d,)/(edy,)?, as a function of mass
parameter m,., to be,
3e? (47)%m?
2 2 r
mg/mA—W[l—I—VV(—W) . (1365)

This is a monotonically decreasing function of m,., and when m, = 0, it recovers the previous
result 3e?/872. On the other hand, when m, = m,, the mass ratio m2/m? reaches its
minimum value, given by 25[1 + W(—1)] = 3¢2/1672, which is one half of the massless

case.

(h) When the spacetime dimension is shifted from 4 as d = 4 — ¢, the j functions (. and
[y are also shifted to be

e3 5A2 — 18)\e? + Hde?

fo=—eet g fr=—eA+ D2

(13.66)

We plot the corresponding RG flow diagrams for several choice of € in Figure 13.3, where
we also extrapolate the result to e = 1.
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Figure 13.3: The renormalization group flows of Coleman-Weinberg model in d = 4 — ¢
spacetime dimensions, with ¢ = 0.005, 0.01, 0.1 and 1 in the upper-left, upper-right, lower-
left and lower-right diagram, respectively.



Chapter 15

Non-Abelian Gauge Invariance

15.1 Brute-force computations in SU (3)

(a) The dimension of SU(N) group is d = N? — 1, when N = 3 we get d = 8.

(b) TIt’s easy to see that t! ¢? t3 generate a SU(2) subgroup of SU(3). Thus we have
fUF = €k for 4,4,k =1,2,3. Just take another example, let’s check [t5, ¢7]:

[t9,47] = i(—52° + G249),

thus we get
f678 _ V3 f673 _ _1
2 2"
Then what about f376?
[3,47] = %tﬁ — 376 % — _f73,

(c) C(F)=+. Here F represents fundamental representation.

(d) Co(F) =+, d(F) =3, d(G) =8, thus we see that d(F)Cy(F) = d(G)C(F).

15.2 Adjoint representation of SU(2)

The structure constants for SU(2) is f%¢ = €%¢, thus we can write down the represen-
tation matrices for its generators directly from

(tbG)ac — ifabc — ieabc‘

More explicitly,

0 0 O 0 0 i 0 —1 0

te=10 0 —i 2 = 5=

G = —il, ta=10 0 0], te=11 0 0f, (15.1)
01 0 -1 0 0 0 0 0
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Then,
C(G) = tr(tote) = tr(tgte) = tr(tete) =2,

Here I3 is the 3 x 3 unit matrix.

15.3 Coulomb potential

(a) We calculate vacuum expectation value for Wilson loop Up(z, z), defined by

Up(z, 2) = exp { e ﬁ dxmu(z)] . (15.2)

By definition, we have

(Up(z, 2)) = / DA, exp {iS[AN] e 7{3 dx“AM(:c)], (15.3)

where

S[A,] = / d'e | = 1R P = (0"4,)?). (15.4)

Thus (Up(z, z)) is simply a Gaussian integral, and can be worked out directly, as

(e, 2) = exp | = 5 (=i f ast) (e fay) [ SR o] s

Here we have set & — 0 to simplify the calculation. Working out the momentum integral,

we get

(Up(z,2)) = exp {— 86—; 7{3 da™ 7{3 dy” (xg_”"y)Q}. (15.6)

The momentum integration goes as follows
A4k e—ik@—y) d4k elke-(z—y)
/ (2m)4 k2 +ie 1/ (2m)*  —k3

: 2m 61kE|36 y| cos 6
—/ 1/1/ d¢sm¢/ d0 sin? 9/ dk by ————
2m)4 k3

- — dkE kg / df sin? Peikelr—ylcost
0 0

47T3
= — — dkg k = — . 15.
472 Jq e k?E|J7 - ?J| 47T2($ - y)Q ( ° 7)

Where J;(z) is Bessel function and we use the fact that [~ dz Jy(2) = 1.
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(b) Now taking a narrow rectangular Wilson loop P with width R in z! direction (0 <
' < 1) and length T in 2° direction (0 < 2° < T') and evaluate (Up). When the integral
over dr and dy go independently over the loop, divergence will occur as |z — y|? — 0. But
what we want to show is the dependence of (Up) on the geometry of the loop, namely the
width R and length T, which should be divergence free. Therefore, when 7" > R, the
integral in Wilson loop is mainly contributed by time direction and can be expressed as

262 T 0 0 0 1
~ - d d 15.
et = | = 25 [t [ap o)

and we have add a small imaginary part to the denominator for the reason that will be clear.

Carry out the integration, we find

T 0 .
1 r>r_ 2T T i T
dz” [ dy° , tanh (——) = —=—.
/0 x/T Y P2 R e RN R T AR

Therefore,

i 2
AR
which gives the familiar result V(R) = —e? /47 R.

(Up) = exp ( T) — ¢ VBT (15.9)

(c) For the Wilson loop of a non-Abelian gauge group, we have

Up(z, 2) = tr{PeXp g ]i QA ()] } (15.10)

where t¢ is the matrices of the group generators in representation r. We expand this expres-

sion to the order of ¢2,

Ur(2,2) = (1) = § da” § dy” A3(a) ALlo)  (820) + (o)

_ tr(l)[l — 2Cy(r) ﬁ da” f; dy”AZ(x)Afj(y)} +0(g). (15.11)

Compared with the Abelian case, we see that to order g2, the non-Abelian result is given by
making the replacement e? — g?Cy(r). Therefore we conclude that V(R) = —¢*Cy(r) /47 R

in non-Abelian case.

15.4 Scalar propagator in a gauge theory

In this problem we study very briefly the heat kernel representation of Green func-
tions/propagator of a scalar field living within a gauge field background.
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(a) To begin with, we consider the simplest case, in which the background gauge field
vanishes. Then we can represent the Green function Dg(x,y) of the Klein-Gordon equation,
defined to be

(0% + m*)Dp(x,y) = =i (z — y) (15.12)

with proper boundary conditions, by the following integral over the heat kernel function
D(z,y,T):

Dp(z,y) = / dT D(x,y,T). (15.13)
0
The heat kernel satisfies the following “Schrodinger equation”:

7 -

The solution to this equation can be represented by

(& +m )] D(a,y,T) = i6(T)6W (z — y). (15.14)

Dy, T) = Gele™ly) = / %(Oz1 k;

d*k Ak k2T — ik ikl
:/W(2ﬂ_)46 (—k*+ )T6 k-x+ik y(271’)45(4)(k’—]€,)

d4k i 2_m2 —ik-(x—
:/(%)4@(’“ T e=ik(@=y) (15.15)

(k) (ele ™ |K) (K )

with H = 0% + m?. Integrating this result over T, with the +ie prescription, we recover the

Feynman propagator for a scalar field:

00 d4k} ) 00 . .
/ dT D(z,y,T) = / _46—1k~(x—y) / AT (K —m+ie)T
0 (2m) 0

d'k e )

(b) Now let us turn on a background Abelian gauge field A,(x). The corresponding
“Schrodinger equation” then becomes

{ia% - ((a,t —ieA,(r))” + mﬂ D(x,y,T) = i6(T)6D (z — y), (15.17)

the solution of which, (z|e7*#7T|y), can also be expressed as a path integral,

(el 7|y = Tim /H (dxl zil exp { —iAL[(9, — ieAy(2))” + m?] bai 1>) (15.18)

where we have identify x = zy, y = x¢, and At = T/N. Then,

<$Z.|6_1At[(6u_i€f4u(x))2+m2] |1'i—1>

4
— / ((; l; < ’ —iAt[02 —ie A, (z) O +m?) |k‘ ><l€ |671At[ iedH* Ay (z)—e? A%( x)]|x >
™
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4
B /((; 16;4 (1] e IR FAUEORE M) oy (1oAY A (1) A2 )]
T

4
— /(d )i4 e—iAt[—k‘?-i-eki'(A(.Z’i)+A($i,1))—82A2(Ii,1)+m2—i6}e—ikr(xi—xi,l)
2m

x>

. _lAt T; — Xi—1 ‘ ‘ 2_, 2 242/,
= Cexp { 1 ( N eA(z;) + eA(q:Z,l)) IAt(m* — e*A%(x;-1))
At fdz N2 . dz . 9
= Cexp [— e <_dt ) — iAteA(x) - FT iAtm ] . (15.19)

In the last line we take the continuum limit, and C'is an irrelevant normalization constant.

Then we get

D(z,y, T /D:z: exp[ / dt ((i—f)Q+m2) —ie/OTd:c(t)~A(:z:(t))1. (15.20)

15.5 Casimir operator computations

(a) In the language of angular momentum theory, we can take common eigenfunctions of
=3, T°T* and J, = T? to be the representation basis. Then the representation matrix
for T% is diagonal:
=diag (—j,—j+1,---,j —1,7).

Thus

r(£3%) = Z m* = 145 +1)(2j +1).

m=—j

Then we have
r (t%2) = Z tr (¢ =1 Zji(ji +1)(2); +1) = C(r),

which implies that
3C(r) = jilji +1)(2j; + 1) (15.21)

(b) Let the SU(2) subgroup be spanned by 7%, 7" and T%. Then in fundamental repre-
sentation, the representation matrices for SU(2) subgroup of SU(N) can be taken as

) /2 _
#i = (0 i/ O2x(v—2) ) . (15.22)
(

N-2)x2 Ov_2)x(n-2)

Where 7; (i = 1,2, 3) are Pauli matrices. We see that the representation matrices for SU(2)
decomposes into a doublet and (N — 2) singlet. Then it’s easy to find that

C(N)=+(5(3+D2-++1) =1, (15.23)

by formula in (a).
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In adjoint representation, the representation matrices (') = if*® (a,b=1,--- ,N? —
1, i = 1,2,3). Thus we need to know some information about structure constants. Here
we give a handwaving illustration by analyzing the structure of fundamental representation
matrices a little bit more. Note that there’re three types of representation matrices, listed

as follows. For convenience, let’s call them t4,tp and t¢:

A _
[ 9% O2x (N—2) . (15.24)
Ov-2)x2 Ov—2)x(n-2)
A B _
£y — o 2x2 . 2x(N-2) | (15.25)
(N-2)x2  J(N-2)x(N-2)
1
b — _5’51' (C)IQ><2 02><(N—2) ) (1526)
Ov-2)x2 Civ-2)x(v-2)

In which, t4 is just the representation matrices for SU(2) subgroup. Thus we see that there
are 3ta, 2(N—2) tg and (N—2)? to in total. It’s also obvious that there is no way to generate
a t4 from commutators between two to or between a tg and to, the only way to generate
t 4 are commutators between two ¢4 or between to tg. Then, t4 commutators correspond to
the triplet representation os SU(2) subgroup, and 2(N — 2)-tp commutators correspond to
the doublet representation of SU(2). In this way we see that adjoint representation matrices
for SU(2) subgroup decompose into 1 triplet, 2(N — 1) doublets and (N — 2)? singlets.
Then we can calculate C(G), again, by using formula in (a), as:

CG)=+11+1)2- 1+ +2(N-2)- L2 +1)2 -+ +1)] =N, (15.27)

(c) Let U € SU(N) be N x N unitary matrix, S be a symmetric N x N matrix, and A
be an antisymmetric N x N matrix. Then we can use S and A to build two representations

for SU(N) respectively, as
S —-USUT, A—UAUT.

It’s easy to verify that they are indeed representations. Let’s denote these two representation
by s and a. It’s also obvious to see that the dimensions of s and a are d(s) = N(N +1)/2
and d(a) = N(N — 1)/2 respectively.

Accordingly, the generator 7% acts on S and A as:

S =TS+ S(T)",  A—T'A+ AT, (15.28)
To get Cy(s) and Cy(a), we can make use of the formula
d(r)Ca(r) = d(G)C(r). (15.29)

Thus we need to calculate C(r) and C'(a). By formula in (a), we can take an generator in
SU(2) subgroup to simplify the calculation. Let’s take

3, = +diag(1,—1,0,--- ,0),

-2
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Then we have:

2511 0 Si3
S0 S . 0 2S5% So3

S=1|: . — BS+ St = Bl Sz Sz 0

St S : : :

Sp1 Sp2 0

0 Ay - A, 00

) ) 0 0

A= An 0 h : — tHAFAL)T = 1 Asp Asy

: B An—l,n 2 : :

Ay oo Apno 0 A AL

Sln
SQn
0
0
A13 e Aln
A23 e AZn

Thus we see that the representation matrices for 7%, in both s representation and a repre-

sentation, are diagonal. They are:

:diag(1707%'”7%717%7”'7%7 07"'70 )7
N—2 N—2 (N=2)(N—-1)/2
tzzdiag(()?%a"'?%a 07"'70 )

——
2(N—2) (N=2)(N-3)/2

Here we have rearrange the upper triangular elements of S and A by line.

Then we get
C(s) = tr (£2)> = L(NV +2);
Cla) = tr(£2)* = (N —
Then,
Cols) = dG)C(s) ~ (N*-1(N+2)/2  (N-1({N+2)
() =05 T NNiDR2 N ’
Cola) = d(G)Ca) _ (N -1)(N-2)/2  (N+1)(N-2)
2 d(a) N(N —1)/2 N ‘

At last let’s check the formula implied by (15.100) and (15.101):

(C(r1) + Co(ra))d(r1)d(rz) = Y Co(r:)d(ry),

(15.30)

(15.31)

(15.32)
(15.33)

(15.34)

(15.35)

(15.36)

in which the tensor product representation r; X ry decomposes into a direct sum of irreducible

representations r;. In our case, the direct sum of representation s and a is equivalent to the

tensor product representation of two copies of N. That is,

N x N &2 s+a.
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Thus, we have,

N? -1 +N2—1
2N 2N

(Co(N) 4 Co(N))d(N)d(N) = [ }Nz _ N(N? - 1)

and
Co(s)d(s) + Ca(a)d(a) = [C(s) + C(a)]d(G) = N(N? — 1).

Thus formula (15.36) indeed holds in our case.



Chapter 16

Quantization of Non-Abelian Gauge

Theories

16.1 Arnowitt-Fickler gauge

In this problem we perform the Faddeev-Popov quantization of Yang-Mills theory in
Arnowitt-Fickler gauge (also called axial gauge), namely A3* = 0. More generally, we may
write the gauge condition as n,A"* = 0 with n* an arbitrary space-like vector of unit norm
(n? = —1). The condition A3* = 0 corresponds simply to the choice n* = ¢g#3. This gauge
has the advantage that the Faddeev-Popov ghosts do not propagate and do not couple to
gauge fields, as we will show below.

Our starting point, the partition function, reads
do(n - A%) >

5 (16.1)

Z = /DAM 5(n - A%)e el det (

with S = —1 [d*z (F%,)? the classical action for the gauge field, and the Faddeev-Popov

determinant is given by

det (%) = det <én,ﬁ“(5“b — f“bchA“C>

:/Dchexp {i/d‘lx b* (n,0"6* — fabchA"c)cb]. (16.2)
When multiplied by the delta function 6(n - A%), the second term in the exponent above
vanishes, which implies that the ghost and antighost do not interact with gauge field. Mean-
while, they do not propagator either, since there does not exist a canonical kinetic term for

them. Therefore we can safely treat the Faddeev-Popov determinant as an overall normal-

ization of the partition function and ignore it. Then, the partition function reduces to

7=ty [ Pcen f ot (- 5 - o 7))

= lim/DAM exp {i/d4x (%AZ (g“”32 —o"0” — %n“n”)Albj

£—0
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_ gf“bc(anAi)A“bAM _ %g2feabf€CdAzAl;\AﬁcA)\d>:| ' (163)

where we have convert the delta function 6(n - A%) into a limit of Gaussian function. Then
we see that the three-point or four-point gauge boson vertices share the same Feynman rules
with the ones in covariant gauge. The only difference arises from the propagator. Let us

parameterize the propagator in momentum space as
D* (k) = Ak*g"™ + BEFEY + C(k*n” + n"k*) + Dn*n"”. (16.4)

Then, the equation of motion satisfied by the propagator,

(9" k> — k'K — %n“n”)Dy,\(l{) =g\ (16.5)
gives
i 1+ &k? 1
k2’ k-n ¢ ¢ k-n" 0 (16.6)

Note that the gauge fixing parameter £ should be sent to 0. Therefore the propagator reads

i ( . kR k:“n”+k:”n“)

k2 * (k-n)? k-n (16.7)

16.2 Scalar field with non-Abelian charge

(a) Firstly we write down the Lagrangian for the Yang-Mills theory with charged scalar
field, as

L=~ (FL)? + (D,0)(D"9), (16.5)

where the covariant derivative D,¢ = (8u + igAthf)gb with ¢ the matrices of gauge group
generators in representation . For simplicity we ignore the possible mass term for the scalar.
Then, it is straightforward to derive the Feynman rules for this theory by expanding this La-
grangian. The rules for the propagator and self-interactions of gauge boson are independent
of matter content and are the same with the ones given in Figure 16.1 in Peskin&Schroeder.
The only new ingredients here are the gauge boson-scalar field interactions, which generate

the following Feynman rules:
oy v, b

\\}C'/J = ig*(tet] + 1) g™,
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(b) To compute the § function of coupling g, we introduce some additional Feynman rules
involving counterterms:

ap
= —igbity(p1 — p2)¥,
D1 {(( \\\\p2
@ - = ip’0y — 0,
p —
ap bv
AN~ NN = —'5ab5f 2 v _ HnVY .
o~ 1063 (p°g" — p"p”)
Then the g function is given by
0 1

To determine the counterterms, we evaluate the following relevant 1-loop diagrams. But the
calculations can be simplified a lot if we observe that the combination §; — d, is determined
by pure gauge sector, and is independent of matter content. This may be most easily seen
from the counterterm relation 6; — d = 0f — 05, where the right hand side comes from ghost
contribution which is a pure gauge quantity. We will demonstrate this counterterm relation
explicitly in the next problem for fermionic matter. Therefore, we can borrow directly the
result of Peskin & Schroeder, or from the result of Problem 16.3(a),
g’ 2 2

5y — 6, = _W@(G)(? —log M ) (16.10)
On the other hand, d3 can be found by evaluating the loop corrections to the gauge boson’s
self-energy. The contributions from the gauge boson loop and ghost loop have already been
given in eq.(16.71) in Peskin&Schroeder, while the rest of the contributions is from the
scalar-loop, and is simply the result we have found in Problem 9.1(c), multiplied by the
gauge factor tr (t2t%) = C(r) and the number of scalar n,. Combining these two parts gives

the divergent part of d3:

2
_ 9 > 1 2 g a?
03 = (4m)? I 3 Oy (@) 3 n,C(r)] ( ; log M ) (16.11)
Then it is straightforward to see that
3
9 (M-t
b=y ( —Ca(0) - 5 nSC(T)>. (16.12)

16.3 Counterterm relations

In this problem we calculate the divergent parts of counterterms in Yang-Mills theory
with Dirac spinors at 1-loop level, to verify the counterterm relations, which is a set of
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constraints set by gauge invariance. To begin with, let us rewrite the Lagrangian in its
renormalized form, with counterterms separated, as

L=—5(0,AL — 0,AL)? + (i — m)y — 0%
+ gATpY L — g f* (0, A) A A
o %92(feabAZAZ)(fechcuAdu) o gE“f“bca“(AZcC)
— 105(0, A% — 0,A%)? + (1020 — 0, )1p — 05640 "
+ 9Oy Alpyt o — g0y f(D,AD) Apu A
— LEI(fer AR ALY (frAM AN — gasen fUeor (A ). (16.13)

Then the counterterm relations we will verify are
01— 0y = 077 — 63 = L(577 — 83) = &% — &5, (16.14)

Note that d§; and d, have been given in (16.84) and (16.77) in Peskin&Schroeder. Here we
simply quote the results:

9 2 2
== Gy [Co(r) + Co(@)] (; “log M ) (16.15)
g’ 2 2
Therefore,
9 2 2

(a) Firstly let us check the equality 6; — dy = 0{ — 05. The 1-loop contributions to §f come
from the following three diagrams:

by

LAY i
" R
. S

The first diagram reads
d?k —i i i
(2m)d k2 (p1 = k)* (p2 — k)

vgfﬁ*f”ﬂ“/' (e — k) (1 — ),

A% k" (ps - k) 1 A% 1
3 rade pebf rfdc — _ 3 rade rebf pfdc, p -
. i 3 rade rebf rfdc 1 1 2
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The second diagram reads

d% i —i —i
N2, rade pebf rfdc o
ooy | @) k2 (o1 — )2 (pr — 2
X papko [9"(k — po — q)7 + ¢"7(q — p1 + k) + g7 (p1 + p2 — 2k)"]

: Ak 1
= —igh ot 1 [ S AR 4 (k) — 2k )]
(2m)d k
3‘3dbffd#/ddk1 3-3dbffd# 2
2 ade re c v - v ade re c M = 16.19
= 4 19 f f f Pa (27T)d k’4 = 4 19 f f f 2 (477')2 € ( )
To simplify the structure constant product, we make use of the Jacobi identity,
0= febf(fabdfdce + fbcdfdae + fcadfdbe) — 2fabdfdcefebf . fcafC2(G)’
then we have .
fadefebfffdc — _§fabccr2(G). (1620)

Note that the third diagram reads —gdf2®ph, thus we see that to make the sum of these
three diagrams finite, the counterterm coefficient 9 should be

2 G
(e _902( ) 2 _ 2
5¢ 7@¥%? mM). (16.21)

Then consider 5. This coefficient should absorb the divergence from the following dia-

gram:

This diagram reads

Ak’ [t p- (K +ap)
— 2 6(11)/ d
7RGV ] Gy ), w2
= — 9_20 (G)5*"p? - L2 + terms indep. of p? (16.22)
2 7 (4m)2% € ' ' '

The corresponding counterterm contributes id5p?, therefore we have

2
e g0(G) 2 5
95 S (—6 log M ) (16.23)

Combining (16.21), (16.23) and (16.17), we see that the equality d; —dy = 0§ — 05 is satisfied.
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(b) Now let’s verify the equality §; — 0o = 5?9 — 03. In this case the calculation turns
out to be more cumbersome, though. The coefficient 63 has been given by (16.74) in Pe-
skin&Schroeder. The result is

5y = (497: E [gcz(a) _ én,@(r)} (% ~log?). (16.24)

Thus we only need to calculate 5?9 . The relevant loop diagrams are listed as follows.
ap
pi ;
ro>
by P cp

For simplicity, we have set the external momenta to be p, —p and 0 for the three external
gauge boson lines labeled with (au), (bv) and (cp). Then the contribution of the counterterm

to this vertex is given by
90y f*° (29" 0" — P — g7'p"). (16.25)

To extract the divergent part from (5%9 , we have to evaluate the loop diagrams shown above.
Let us calculate them now in turn. The first diagram reads

Jé\ — %g(_iQQ)fade [fdeffbcf(g)\ugﬁp . g/\pgm/)
AV _Kp

+ fdbffecf<g)\ngup o g)\pgm/) + fdcffebf(g)\Nng — ¢y )]

X / ((217:;?[1;_21 (k :ip>2 [95(19 + k),«v + gM(—Qk + p)“ + gg(k . 227),\}

— %ig?)fachQ(G) X %(g)\ugnp . g)\pgm/)

d% 1 1 . o
8 / (27r)dﬁ (k — p)? [gx(p + k) + gan(—2k + p)* + g (k — 2]?),\]

1: 3 rabc 9 (VP WPV ddk 1
= Sig" [ Co(G) - 5 (g™ — g"'p") 2k

9. 3 pab KV P Hp P2

_ aoc 14 _ 14 . — 1 2
= Sl fC(G) (g™ " — g"p") @) (16.26)

There are two additional diagrams associated with this diagram by the two cyclic permuta-
tions of the three external momenta. One gives

i 2
(4m)% €’

9 : aoc v 1%
Zlg3f PCo(G) (g™ p’ — g"*p") -

while the other yields zero. Therefore the sum of these three diagrams gives:
i 2
(4m)% €’

9 : aoc v 4 14
Zlf’f “Co(G) (29" p” — g"Pp” — g"Pp") - (16.27)
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Then we come to the second diagram, which reads

_ Sfadffbedfcfe d’k ;1;1 i
2r) B B2 (p+ k)

x [g"(2p+ k)" + g7 (—p — 2k)* + ¢ (k — p)°]
< [9(=p + K)o + g2 (—2k — p)” + g4 (2p + k)*]
x|
[

9k — 29 k" + gfk.]

3 1 rabc ddk/ 2(1 )k/2
i~ $re0) [ i [ R

|
X [2(8+ 152)g"p + (302 — 23) (g"p" + g"°p" )]

. ahe 13 y dk 1
= ig’[ = 3" CA@)] - - (29" / i
13 - 3 rabc v v, 1 2
= — —ig’ f*Co(G) (29" D" — g"'p" — g""p") - — (16.28)
8 (4m)2 e’
The third diagram reads
§ d?k N2 i
2N daf rebd fce/ 1 <_> . +k KV P
oy s [0 () e e
Ak [ 2(1 — 2)k?
e S abc d
19 Qf 02(G)/ (27T)d/0 x (k;’Z—A)?’
X = —xg"p’ — xg"p” 4 (1 — x)g"p"]
1.5, i 2
— @O (G (gM p” + gMPpY — 2¢7Pp*) - —. 16.29
= 5119 [ CAG) (" D" + gp" = 297p) ) (16.29)
There is again a similar diagram with ghost loop running reversely, which gives
1. 3.m o p i 2
el abc v — IghPypY 7 INAN =
510 [ CAG) (gD = 29" + g"p") (@) e
Then these two diagrams with ghost loops sum to
L. 5. .w i 2
— ave 29" pP — gHPp” — g"Ppt) - ———. 16.30
5119 [ CAG) (29" — g"p" — g"p) (I ( )

Finally we consider the fourth diagram with fermion loop. There are also two copies with
fermions running in opposite directions. One (shown in the figure) gives

e [ okt

4 3 b 1 2
= —npg’tr (14°0) (29" p” — g"Ppt — gPpY) - = 16.31
S gt (0) (29 — g7t — ¢"p) I e (16.31)
while the other gives
4 3 b 1 2
_ = tr (£ (20 P — g"PpH — glPp?) iy
gt (0) (29" — g7 — ¢"1) a7 <
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Thus they sum to

4 afpe , y 2
g’ tr ([ ) (29" — 9P — g"p") @ e
4 3 i 2
_ C abc2,u1/p_ Vp PV = 16.32
5 insg (r) f* (29" p” — g p" — g"*p") @) ( )
Now, sum up the four groups of diagrams, we get
2 9 13 1 4
— fave I YN e —n:C 20" P — g"Ppt — ghPpY 16.33
amE e’ [( TR 24) 2(G) + gy (T)}(gp 97" —g"p"), (16.33)
and consequently,
2 r2 4 2
5 = 5 |5Ca(G) = s C)| - (5~ tog M?)). 16.34
1 (47’(‘)2 3 2( ) 3nf (T’) c 0g ( )
Thus,
2 2
5} — by = —(fT)ZOQ(G) (= —10g0r2), (16.35)

which equals to d; — do (16.17), as expected.

(c) Now let’s move to the relation §; — d = %(5;19 — 03). This time we have to evaluate
5;19 , which is determined by the divergent part of the following five types of diagrams:

Eiii ot

Firstly the counterterm itself contributes to the 1-loop corrections with

_ 5119 [fabefcde (gupgua o guagup) + facefbde (guugpa o guagup)
4 fadefbce (g,uugpo o g,upgucr)} ) (1636)

ap

cp

To evaluate the loop diagrams, we set all external momenta to zero for simplicity. The first
diagram then reads

— %( ) [fabgfefg( ,u)\ VK un V)\) faegfbfg( uv /\n_g,ungu)\)

+fafgfbeg( /LV AR _gu)\ VK):| |:fefhfcdh(g)\g,i 9295)

d?% ; —i\2
+ fEChffdh( Kgpag;\gn) + fedhffCh(g)\ngpg - gigg)] / (27T)d (ﬁ)

24
19 [ abg refg refh pcdh 2g*P g¥7 — Qg7 gvP
—2(4w)2€f fIfIn fe (29 g 9"7g"")
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+ fabgfefgfechffdh <gupgua o guggup) + fabgfefgfedhffch (g;w'gup . gupgua)
+ faegfbfgfefhfcdh (gupgua o guogl/p) + fafgfbegfefhfcdh (guagup o gupgua)
+ tr (t%° %) (29" g7 + " g"7) + tr (L7t T) (29" g7 + g7 g"")
+ tr (1) (29" 977 + g7 g"°) + tr (£71°11°) (29" 9" + 979"
4

lg 2 [ aybyicyd v _po vo o v
= 2 | tr (t2%tt?) (49" gP — 8gH* 10g"? g°
STETSER: r ( )(49""g 9" 9" +10g"? g"")
+ tr (t°1°17°) (49" g7 4 109" g"7 — 8gWg”P)], (16.37)

where we have used (16.20) and £ = i(t®);. with ¢* the generators in adjoint representation.
There are two additional diagrams similar to this one, which can be obtained by exchange
of labels as (bv <> ¢p) and (bv <> do). Therefore the total contribution from these three
diagrams is
ig*

(4m)? €

+ tr (1) (g™ g7 + TgM 9" — 8gMg")

+ tr (£t (—8g" g*7 + Tg"Pg"7 + Tg"7 g"")|. (16.38)

tr (1471t (79" g — 8" 9”7 + Tg"7g"")

The second diagram has five additional counterparts. The one displayed in the figure
reads

;}\f = (—ig®)g* [ frT [ Fe (gh gl — 9398)
+ fM M gang? = g395) + LM (gang” — 9)97)]
d .
X / T (i)g(g“AkT — 2kH + gTFEN) (GRS — 295kY + g™k, )
(2m)d \ k2 T T
= g" foe9 fror [ eIl peit (gh gl — g39%)
+ LM gaeg” = 9395) + fU M (gang” — 9)90)]
d%% /1\2 , , ,
RN

i 2 ae € Ci vo g UV
e S G~ gg)

+ faegfbgffechffdh(139,u1/gpo' + 4gupgua o zguagyp>

+ faegfbgffedhffch(lgguugpa o 29upgua + 4guagup)}
gt i
4 (

Arr)?
— tr (t°°t4°) (139" g7 + 49" g7 — 29" g"P)
— tr(

4

g
= —
4

2
? [ideh tr (tatbth) (69upgua o g,uagup)

tatbtctd) (13g,u1/gpcr . 2g,upgua 4 4gyagup)]

4 .

g 1 2[ atbycyd v po vo o v
_— — | tr (¢4 °tt) (13gHY gP° — 8gHP 10g"7 g**
IREER: r ( )(139"g 9" 9" +10g"7 g"")
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ot (198°1949) (13g™ g7 + 10g"g"" — 89‘“’9”’))}, (16.39)

where we have used the fact that focd fo9/ fefh fedh — j pedh ¢p (paghgh) = ¢p (t“tb[tc,td]), and
faca foof fech fidh — ¢y (t2¢P49¢¢), etc. There are additional five diagrams associated with
this one, namely,

do do

Eiiiliiiiii

do cp

In the diagrams above, (a) gives the identical result to the one have just evaluated, while (b)
and (c) give identical expression, so do (d) and (e). We can find (b) from the result above
by the exchange (ap <> ¢p), and (d) by the exchange (ap <> do). Then we sum up all six
diagrams, which is equivalent to summing the original one with (b) and (d) and multiplying
the result by 2

-2 4(%;)2 i [tr (t“tbt td)(l?)g“”gp" 8g"* g + 10¢"7 ¢g"?)
+ tr (t*°1%°) (13" P + 10g"°g"° — 8¢"° ¢"*)
+ tr (tt°t*7) (13¢"7 g"° — 8gH* g7 4+ 10g"" g*7)
+ tr (t°t%) (13¢"7 g*° — 8" ¢*° + 10g"°g*7)
+ tr (t4°°t*) (13¢"P g7 — 8¢ " + 10g"° ¢"*)
+tr ($U04949) (13942 g7 — 8gH7 g + 1Og‘“’gp‘7)]
ig* 2

= [tr (t*4°t°t7) (239" g7 — 16g"7g*7 + 239" g"*)

- 2(4

m)? €
+ tr (£%4°19°) (23g" gP7 4 23gH°g"7 — 16917 g**)
+ tr (L4°) (— 169" g*7 + 23¢"P 9" + 23gfwg”p)] : (16.40)

where we use the cyclic symmetry of trace and also the relation tr (t2t°tt?) = tr (¢4t°t°t).
The third diagram reads

A% 7 —in4
K =gt [ S () @ =20k )
X (guk® — 2g5K" + g% k) (9”"kx — 295k + g{k")
X (ggk,{ — 296,{]{;0 + ggk’);:)
k1
g i (EFF) | oy gy
+ 3KA(gRPRT + gRRS + gUTRIE + g k)]

di% 1 134
gt ) | GoiGee [24

[BAKMEVEPET 4 KX (g™ g™ + 9" ")

(9" 9”4+ g"°9"" + "7 g"")
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v loa vo 3 v g vo
+ (9" g” + g"°g"%) + 5(9“ g + g"°g")

ig 2 byd
= ————tr (t"t°t°)(47g" 9" + ATg"’ "7 + 179" g"7). 16.41

4

Combined with the other two similar diagrams, we get

: 4

19 2 agbycyd v _po vo o v

—Z = [t (t4%tt?) (47gH gP° 4+ 17gH° 47g17 g*°

12(4W)26[r( )(ATg" g" + 17" 9" + 47" g"*)
+ tr (L00) (4TgM g7 + ATg"P g + 17gH7 g™

+ tr (£t ) (179" g + ATg"g"" + 47" g*")] (16.42)

The fourth diagram with ghost loop is given by

s 4 reah rhbg rgdf fce/ ddk 14 v o
) = (— 1)) 'Kk K
S = oty [ ()
19

2
= — — 2 = tr (t4°%°) (g" g™ + g g"7 + g7 g""). 16.43
2I(4n) € r( 99"+ g"g" + 9"7g"") (16.43)
There are six distinct diagrams with ghost loops, with different permutations of external

labels (Lorentz and gauge). They sum to

4

lg 2 agbycyd agbydyc agcybyd

X (" g" + ¢ g"" + ¢"7 g"?). (16.44)

Finally the diagram with fermion loop reads

. o
}:EZZ(ManU%ﬁ%ﬁﬁﬂk/(%SdbﬁtrLW%ﬁ”iv”%v”i
=gyttt / (gwl;d (k}z)4 [4g™ 9" + 979" = 9" ) (K*)?
— B(g" KR + g KK + ¢RI 4 g KRR + 32K KRR
4 aybydyc ddk 1 v _po vo o v
=—gnstr (trtrtrtr)/ww[ﬁl(g“ 9" +g"g"" — 9" g"")
—4(g" 9" + 9" g"7) + 3 (9" 97 + 909" + 9" g"")]
4ig*n; 2

=~ S TR @ + g~ 27) (16.45)

Combined with the similar diagrams with different permutations, we get

8ig4n 2 a C 4 loa vo ag UV
T 4@2 - [ tr (L2265t (9" 77 — 29"° 9" + g"7g"")
+ tr (L0LN) (9" 97 + 9" g" — 29" g"")

(
+ tr (¢80 D) (=29 g7 + g g¥7 + g g""). (16.46)

r-rorer
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Now, we sum up the first four types of diagrams, namely, (16.38), (16.40), (16.42), and
(16.44), and find the result to be

2194 2 a C 4 loa vo ag UV
3(4—7r)2;[t1" ("t (=g g” + 296" — g7 g"")
+ tr () (—g" 9”7 — "9 + 29" ")
+ tr (1t (29" g7 — g g"T — g“"g””)]
2194 2 W p b,d bycsd byd
= —2 1 g"g” (2 tr (t%L°tY) — tr (F9°t%) — tr (E4 7 t%°
3(4@%[9 g7 (2t ) — tr( ) — tr )
+ g™ g7 (2tr (L") — tr (t4°1%) — tr (14°1"7))
+ g"7g"P (2t (t"°t%C) — tr (t"ttT) — tr (t“tctbtd))}
4
19 2 v po ade fbce ace rbde
= 2o ()" gro(— —
Sy ¢ CHO g g7 (=g = g
+ g,upguo(fadefbce . fabefcde) + guagup(facefbde + fabefcde>]

B 1g4 ECQ(G) [fabedee (gupgua _ g/w'gl/p)
3(4m)? €

+ facefbde (g,ul/gpa _ guagup) + fadefbce (g,ul/g,DJ _ gﬂpgug)} ) (1647)

Similar manipulations on (16.46) gives

4ig* 2
_ = C abe pcde( pp vo  _puo vp
3(dm)2 e o(r) [f7 (9" 9" — g7 g™")
+ foce fhle (g gPT — gho gUP) + fOI fr (g gPT — ghPg”?)]. (16.48)

Therefore, we finally find 617 to be

2

- 3(2)2 [Co(G) + 4nyCalr)] (% ~log M?), (16.49)

and it is straightforward to see that 5;19 — 3 = 2(8; — 92).
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Quantum Chromodynamics

17.1 Two-Loop renormalization group relations

(a) In this problem we study the higher orders of QCD § function. Formally, we have

bo 3 b1 5 bg 7
B(g) = @ T @ T et SRR (17.1)

The we can deduce the corresponding function for oy = ¢g*/(4r), namely,
80(5 2b0 2 2bl 3 2b2 4

=— — - — cee 17.2
W ow T T am S T @ T s T (172)
Integrate this equation, we get
?q as(Q) b b b -
o 0 o 1 3 2 4
— == dag | — cee | 17.3
o= e[t et et | )
The integral can be carried out approximately, as
47 1 b1 OdS(Q2)
lo AQZ—{ + lo 4+ 174

Then the running coupling a,(Q?) can be solved iteratively, to be,

47

o 1 by loglog(Q/A)?
@)= 57 oy~ % Tterhrr )
(b) Now we substitute (17.5) into the e*e™ annihilation cross section, we get
o(ete” — hadrons)
=0p- (32@?) : {1 + a? + CLQ(%>2 + O(af)}
f

_ 4 1 4b; loglog(Q/A)?
- (3; G) |1+ oo~ W i ) 079

Since the expression for the cross section is independent of renormalization scheme to the or-
der showed above, we conclude that the S function coefficients by and b, are also independent

of the renormalization scheme.
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17.2 A Direct test of the spin of the gluon

(a) We repeat the calculations in Part (c¢) of the Final Project I, with the gluon-quark
vertex replaced by a Yukawa vertex.

M= QP (ig)alh) | = o) S oap) AT

Then, use the trick described in Final Project I, we have

_Z’MP Q2 S & (Y, Vo)
1 1
X“Kh 7 ”@+mﬁ4 it s m+m“V4

32Q59° 1 117
- T(pl Pl k) (ks ) [(lﬁ + k3)? " (ko + k3)2} ‘ (17.8)

Rewrite this in terms of z,, 7 and x3, we get

LS M= @24u~mu—%ﬂ L, 1}2

-z, 1-—ux4
_ AQe 73
35 (1—a)(1—2g)
Note the phase space integral for 3-body final state is deduced in Final Project 1 to be

S
/dH3 = W/dl'quq,

thus the differential cross section is given by
d? 4o’ Q? 2
T (et - qiS) = g HIMP = e e Sa B
dzydas 12873 3s A (1 —24)(1 — 24)

(17.9)

(17.10)

(b) Now let x, > z, > x.. Then there are six ways to associated the original three
variables z,, x; and x3 to these three ordered ones. Note that the integral measure dz,dx;
does not change for different possibilities since the change of integral variables (z,,z;) —
(x4, x3) or — (x4, z3) generate an Jacobian whose absolute value is 1, due to the constraint
Zq + x5+ x3 = 2. Therefore, summing up all 6 possibilities, we get

d?c _ _
i dxb(e+6 — qqS)
22 T} x2
x £ + + 2 , 17.11
(I—z)1—2p) (Q—z)1—20) (1—azp)(1—2.) ( )
for ¢¢S final state, and
d?o _ B
Lo (ete” — qq9)
r2 + 27 r? 4 x? T2 + 22 (1712)

X + + 9
(I—z)(1—x) (Q—z2p)(1—2.) (1—2)(1—xzy)
We plot these two distributions on the x, — z; plain with the range z, > z, > ., as shown
in Figure
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Figure 17.1: The differential cross sections of ete™ — ¢gg as a function of x; and z»,
assuming gluon is a vector/scalar particle in left /right diagram.

17.3 Quark-gluon and gluon-gluon scattering

In this problem we evaluate the cross sections for two processes: (a) q¢ — gg, (b)
99 — 99-

(a) There are three diagrams contributing the process q(k1)q(k2) — g(p1)g(p2) at the tree
level, as shown in Fig. 17.11 of Peskin&Schroeder. The amplitudes associated with these
diagrams are listed as follows:

M = (ig)0(ks)¢" (p >(§f1 ! ;Z;z (pyulkn)t't", (17.13a)
iMs = (i9)*0(ka)¢" (1) (ﬁf F jl;z (pa)u(ko)tet", (17.13b)
iMs = (i9)g " [¢" (D2 — P1)” — " (2p2 + 1) + g™ (p2 + 2p1)"]

X G e e ()t (17.13¢)

It is convenient to evaluate these diagrams with initial and final states of definite helicities.
By P and CP symmetry of QCD, there are only two independent processes, namely qr.qr —
gr9r and qrgr — 9rgr, that could be nonzero. Let’s evaluate them in turn for the three
diagrams. To begin with, we set up the kinematics:

k= (E,0,0,F), Py = (F,Esin®,0, Ecosf),
ky = (E,0,0,—E), ph = (E,—Esinf,0,—Ecos?). (17.14)

Then,
ur (k1) = V2E(0,1,0,0), v (ko) = V2E(1,0,0,0).
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(0, — cos @, —i,sin 0), €ru(P1) = 5(0, —cos b, 1i,sin0),

E*Lu(pl) = \/AQ
(0, cos @, —i, —sin 0), €ru(P2) = \%(O,cos 0,i, —sinb). (17.15)

qu(m) =

S 5

Now we begin the calculation. (In the following we use sy = sinf and ¢y = cos6.)

—Sp 1+ Coy
. _ —ig?F?tb® -1+ Sp
iMi(qeqr — grgr) = ———(0,0,1,0)
S -1 - Coy
1-— Coy —Sp
1-— Cop —Sp S 1-— Co 0
% —Sp —1 + Co -1 - Cop —Sp 1
—14cy Sp —Sg —14cy 0
S 1-— Cy 1 + Cy S 0
: 2,bya 2E2 : : 24bja ¢
=ig°t’t T(l —cosf)sinf = —ig“t’t* sin 6. (17.16)
S 1— Cy
. —ig?E%tt? —-1—c¢ —s
iMa(qrdr — groR) = —0————(0,0,1,0) v
—Sp -1+ Co
14 ¢ Sg
1 + Co Sg —Sp 1 -+ Co 0
« Sp —1—cy —14cy Sp 1
—1—09 —Sp S —1—69 0
—Sp 1 + cg 1-— Co —Sp 0
: 24bga 2E2 : s 24a4b
= —ig“t"t"——(1 + cos0) sin O = ig“t*t’sin 6. (17.17)
u
Co S 0
] 2 abctcEQ s —c 1
My (g2an — grgm) = L2 (0,0,1,0) |4 v
—Cp —Sp 0
—Sp Co 0
= g f*1°sin§ = —ig*[t*, "] sin 6. (17.18)
Thus we find that
iM(qrdr = grgr) = (iM1 +iMs +iMs)(qrdr — grgr) = 0. (17.19)

In the same manner, we calculate the amplitude for q.qr — grgr. This time, we find:

iMi(qrdr — grgr) = — ig*t"t*sin 0, (17.20a)

t
iMs(qrdr — 9grgL) = — ig%at”Z sin 0, (17.20b)
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iMs(qrdr — grgr) = 0, (17.20c)

Therefore,

/
iM(qrdr — groL) = —ig? (tbt“ + t“tb—> sin ), (17.21)
u

and by crossing symmetry,
iM(qLdr — gror) = —ig® (tbt“ + t“tb%> sin 6. (17.22)

There are two more nonzero amplitudes with qrqy, initial states, which are identical to the
amplitudes above. Then we find the spin- and color-summed/averaged squared amplitude
to be

11 )
pp 2 M
spin,color
1 4 52 brayasb babat abbat2
=5572°9 sm@(tr(tttt)—l—Qtr(tttt)—+tr(tttt)—2>+(t<—>u)
u u

8mia? 9 16 2 4t
=3 (1 — cos 9)[(?<1+ﬁ)_3_u)+(“_>u>1

5127202 [t uw  9(1? + u?)
_ s |2, 2 2 TR 17.23
27 {u * t 452 ] ( )
Therefore the differential cross section is given by
d 2ra? [t t* + u?
do _ Bmaift v S+ ] (17.24)
dt 2752 |u t 42

(b) Now consider the process g(k1)g(k2) — g(p1)g(p2). The four tree level diagrams are
shown in Fig. 17.12 of Peskin&Schroeder. Their amplitudes are given by:

. abc pcde —1 v v v
IMI = g2f b f d ? [g“ (k’l — k’z))\ +g9 )\(kl + 2/{72)“ — g)\‘u<2]€1 + kg) }

X g7 (p2 — p1)x — 93 (p1 + 2p2)° + g5 (p1 + 2p2)”] eu(kr)en(ka)e, (p1)es (p2),

(17.25a)
. ace e —1 v
My = g° foe f* - (9" (k1 + p1)* — 97 (201 — k)" — 9™ (2ky — p1)"]
X [977 (ka + p2)x — g3(2p2 — ko) + gx(p2 — 2k2)7 | eu (k1 )€ (ka)es (p1)€s (p2),
(17.25b)

: ade pbce —1 o o v o
iMs=g’f : fb 0 [g“ (K1 +p2)A -9 A(2102 — k)t — 9/\ (2k1 — p2) }

X [g77 (ks + p1)a — 95201 — k2)” + gX(p1 — 2ks)” | € (k1) e (ko) el (p1)€s (p2),
(17.25¢)
iMy = —ig?[f*f% (e(kr) - € (pr)e(ka) - € (p2) — (k1) - € (pa2)e(k2) - € (p1))
+ foe P (e(kr) - e(ka) e () - € (p2) — (k1) - € (pa)e(ks) - € (p1))
+ [ (e(Ra) - €(ko)e* (pr) - € (pa) — €(ka) - € (pr)e(ka) - € (p2))]. (17.25d)

€ €
€ €
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The choice for all external momenta and final states polarizations are the same with that in
(a). Now to evaluate the amplitude grgr — grgr, we also need the initial states polarization
vectors for right-handed gluons with momenta k; and ks, which are given by

er(k1) = 5(0,1,1,0), epk2) = 75(0,—1,1,0). (17.26)

Then after some calculations, we find,

IMy = — ig? f% f% cos 6, (17.27a)
19 4+ 7cos@ — 11 cos? 0 + cos® 0
: — 2 pace pbde . 1727b
1M2 lg f f 4(1 — oS 9) ) ( )
19 — 7cos@ — 11 cos? 0 — cos® 6
: — 3 2 rade rbce . 17.2
My = ig? /] o , (17.27¢)
iM, = —ig? [f“befc‘ie cosf + + f4° f*%(3 4 2 cos 6 — cos” )
+ Lfode (3 — 2cosf — cos2)} : (17.27d)
The sum of these four amplitudes is
2
IM(9rgr — grgR) = — 2ig” [JMbedee cos @ — foce fhie (— + cos 9)
1 —cosf
2
__ rade rbce _
e <1 4 cos b COSQ)]
1
— 4] 2 [ ace bde ade pbce ]
ig” | /" f —cosf I 1+ cos6
— 219 |:facefbde + fadefbce i| (1728)

We can also obtain the amplitudes for g.gr — grg9r and grgr — grgr from the result above
by crossing symmetry, namely the change of variables (s,b) <> (u,d) and (s,b) < (t,c¢),
which gives

IM (ngR N ngR) — 219 |:facefbde + fabefcde :| (1729)
1M(ngR — gRgL) — 219 [fabefcdeg o fadefbcea]' (1730)

The amplitudes for grgr, — 9r9r, 9r9r, — 9grgr and grgr — grgr are identical to the
amplitudes for grgr — 9rY9R, 9.9r — 9r9r and grgr — gr9r, respectively, due to parity
conservation of QCD. It can be shown by the conservation of angular momentum that other
helicity amplitudes all vanish. Therefore we have found all required amplitude. To get the

cross section, we take the square of these results.

Z | M(9rgr = gror)|’

|:fa06fbdefacffbdf 8 fadefbcefadffbcf 8 + 2facefbd6fadffbcf S :|
tu

2 2
— 44 [tr (t“t“tbtb)< + S—) +2tr (gegbrert) ]
12 tu
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2 2 2

= 288" (Sr + S5+ ), (17.31)

IR

where t* is the generator of SU(3) group in adjoint representation which is related to the
structure constants by f%¢ = i(t%),.. Thus tr (t%°t°*) = (Cy(G))%d(G) = 72, and

tr (£%¢°t) = tr (¢, %) + tr (e = Sifr ([t ) 4+ (Co(@))*d(G)
= — g fU O () + (Co(G))?d(G) = 5 (Ca(G))*d(G),

which is 36 for SU(3). Similarly, we can work out the square of other amplitudes, to be

) o ur o u?
Z (M(grgr — grgr)|” = 288¢g (t_2 tz T g>a (17.32)
U S
> " [M(grgr = grgr)l* = 2884 (; ta T @) (17.33)
Therefore, the spin-averaged and squared amplitudes is
1 1 9 1 4 2tu 2us 2st
g @M= g 2288 (6_ 2 2 2 )
tu us st
2 2
= 727> (3 - E) (17.34)
Thus the differential cross section is
o o’ tu  us st
— (g9 — = : 3——————). 17.35
99 = 99) = — 5 ( 22 g (17.35)

17.4 The gluon splitting function

In this problem we calculate the gluon splitting function P, ,(z) by evaluating the
amplitude of the virtual process ¢ — gg, as shown in Fig. 17.2.

Figure 17.2: The Gluon splitting process.

The momenta of initial and final states are taken to be the same with that of Fig. 17.16
of Peskin&Schroeder. That is, we have

b= (p70707p)7 q = (Zp7pJ_70>Zp)7 k= ((1 _Z)pa _pJ_aoa(l _Z>p)7 (1736)
and the polarization vectors associated with gluons are,

eiL(p) = (L -1, 0)7 63%(17) =

S -

€ (q) =
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ey (k) = (1, i, ﬁ), ehk) = L (L1, ﬁ). (17.37)

Then we can evaluate the amplitude for the process g — gg directly, which is given by

M = g el (e(q) - e(p)) (P + q) - € (k) + ((q) - €* (k) ((k — q) - €(p))
— (k) - ) (0 + k) - €*(a)) ] (17.38)

We evaluate the amplitudes with definite initial and final polarizations in turn:

M0 (p) = 0u(0)an (k) = V(1 + ) asp., (17.39%)
iIM™(gr.(p) — g1(q)gr(k)) = %gfabcpm (17.39b)

Mg, () — gn(@lan () = Y= gty (17.3%)

iM™(gr(p) = gr(q)gr(k)) = 0. (17.39d)

By parity invariance, the amplitudes with right-handed initial gluon are dictated by the
results above. Note further that o fe¢ = 24 thus we have

1.1 Z |M|2:%.%.2.24.292pi

spin,color
1 1\2 22 (1—2)?
X [( + —> + ( + }

11—z =z 1—2)? 22
12¢%p% [1—z 2
- 1 }
2l—-2)L =z +1—Z+Z( ?)
2 2,2
L PO (2), (17.40)

z(1—2) 979

where the superscript (1) represents the part of the splitting function contributed from the
diagram calculated above, in parallel with the notation of Peskin&Schroeder. (See 17.100.
for instance.) Therefore we get

1_
P<1>g:6[ SR (17.41)

g z 1—2

Besides, there should be a term proportional to 6(1—z) in P,.,, which comes from the zeroth
order, as well as the corrections from Py and Py g, where P y(z) = 5(2* + (1 — 2)?).
Now let’s take it to be A§(1 — z), then the coefficient A can be determined by the following

normalization condition (namely the momentum conservation):

1= /1 dzz[2np Py g(2) + PO (2) + As(1 — 2)], (17.42)

where ny is the number of fermion types, and the coefficient 2 is from contributions of both

quarks and anti-quarks. To carry out the integral we use the prescription —— — —*

1-z (1-2z)4>
then it is straightforward to find that A = = — —n 7. Therefore,
1—=z z 11 n
Pyey =6 1-2)| + (5= 2L)ot-2), 17.4
g = 0 . +(1_Z)++z( 2)| + 5 3 (1—2) (17.43)
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17.5 Photoproduction of heavy quarks
In this problem we study the production of a pair of heavy quark-antiquark by the

scattering of a photon off a proton. At the leading order at the parton level, the process is
contributed from the photon-gluon scattering, as shown in Figure 17.3.

NG

Figure 17.3: Tree diagrams for the photoproduction of heavy quarks at the parton level.

The corresponding amplitude can be read from a similar process vy — ete™ in QED.
From (5.105) of Peskin & Schroeder, we have the amplitude for ete™ — 2+, which reads

(adapted to our notation for external momenta)

1 B k - P2 kl'pl 1 1
—Y [ Metem =2 22264[ —= +2m2< + )
4 Z| ( 7l ki-pr ki-pe kuopr Ry

1 1 2
—m? + } . 17.44
</f1 D1 ky ‘P2> ( )

Then the amplitude M(vg — QQ) can be obtained by making the exchange (ki, k) <>
(p1,p2), replacing e* by e%g?, and also including the factor %Qg tr (t9¢*) = %Qg taking
account of the color average, the electric charge of quarks, and the summation of color
indices, respectively. Then the amplitude in the present case is

1 = pi-ke  p1-k 1 1
— M(vg — 2= e2g? 2{ + +2m2( + )
4'82| (79 QQ)l g Qq p1- k1 p1 - ko pr-ki o pi-ko

1 1 2
—m? + ] . 17.45
(pl - ky p1- k?2> ( )

In parton’s center-of-mass frame, we have k; = (F,0,0,F), ks = (F,0,0,—F), p1 =
(E,psinf,0,pcosf) and py, = (E, —psinf,0, —pcos ), with p> = E* — m?. Then p; - k; =
E(E —pcosf) and p; - ko = E(E + pcosf). Then the differential cross section is

(17.46)

dé TaosQ2 p [ E%+ p?cos? 6 — 2m? 2m*
dcosd 16 E3 '

B E? — p?cos? 6 ~ (E? = p?cos?h)?

Then the cross section for photon and proton initial state is given by

o (k) + plk) — QQ) = / Ao £, ()5 (1 (k1) + g(aks) = QQ).  (17.47)
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17.6 Behavior of parton distribution functions at small

xr

(a) In this problem we study the solution of A-P equations at small x with certain ap-

proximations. Firstly, we show that the A-P equations,

e = SO o5 (5(20) i 20))

f
+ Pg<—y(’*’)fy<%aQ>}a (17.48)
lengf( ,Q) = as(;y) /xl%{ Pyey(z )ff( Q) +Pq%g(z)fg<%,Q)}, (17.49)
Tiog 07 @) = %@2)/:%[ Pyey(z )ff< Q) +Pq+g(z)fg<%,Q)}, (17.50)

can be rewritten as a differential equation with variable £ = loglog(Q?/A?). To see this,
we note that d/dlog@ = 2e7¢d/d¢, and to 1-loop order, a,(Q) = 2m/(bolog(Q/A)) =
(47 /by)e~¢, so we have

Shwg =2 dj i)Y (11(2.) + 1(£:))

f
+Pg<—g(z)fg<%>€>]a (17.51)
Tl = bo d—j[ Paca@ 1 (5:€) +Pqﬁg<z>fg(§,s)], (17.52)
jgf (x.8) =3 :d_;{ Pyeq( )ff( 5) +Pqeg(Z)fg(%§>]. (17.53)

(b) Now we apply the approximation that 1) gluon PDF dominates the integrand in the
A-P equations and 2) the function §(z, Q) = = f,(x, Q) is slowly varying with = when z is
small. Then, define w = log(1/z), which gives d/dw = —xd/dz, we can calculate

e - 10C)

_mi(i_f/gc %Pg%g(z)fg(gaC»)
2Py g() fo, Q) — i_f/; dZPg%g(@% [Efg<£aQ)}
by TPy g() fo(2, Q). (17.54)

From the result of Problem 17.4 we know that z P, ,(z) = 6 as x — 0. Therefore the A-P
equation for f, becomes

2
bo
2

~

0? 12
Fuged @) = 3-i(.©) (17.55)
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Then we verify that
48 /
1= K@) [foute - @) ) (17.56)

is an approximation solution to the differential equation above when w¢ > 1, where K (Q?)

is an initial condition. We apply 9%/0wd€ on this expression, to get

02 1 48 48 1/2
5wae? 8 = T ot = §o> exp([ﬁw@_@)} )

2
{ (€ —¢&) (? ) + (1 + %w({ — 50))1((@2)} . (17.57)
In the limit wé > 1, the square root term in the last line dominates, thus
0? bo 48 1/2 12
s, = Sr@en ([ue-o)] ") = Zawe. a1

(c) Then we consider the A-P equation for quarks. If we adopt the approximation in (b)
again, namely, the gluon PDF dominates and the function §(z,§) = zff(x, Q) is slowly
varying, then we have

S =rgitr =2 [ Lr,0n(L)
1720 1dqu<_g( )g (%,5) :blo/xldz<z2+(1_z)2)§<§>5>
~ %[%(223 e 3@@(%,5)} s 3%)@(3;, ), (17.59)

where we have used z < 1 and 9¢(z,€)/0x ~ 0. Then, we verify that

_ 1/2
i\ @) e ([ -w)] ) (17.60)

is again an approximate solution to the equation derived above, in the limit w&¢ > 1. In
fact,

e = o ([ute -] ) | @)

= —bow(;’_ o (K@) 426 - &)—a[i}(? ) )}
~ 3ibOK(Q?)exp ([%w( - é“o)} 1/2) = 3%)9(:1:,5). (17.61)

(d) We use the fitted formula of K(Q?) to plot the PDFs of gluon and quarks in Figure.
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Figure 17.4: Approximate parton distribution functions at small x with Q = 500GeV.



Chapter 18

Operator Products and Effective
Vertices

18.1 Matrix element for proton decay

(a) We estimate the order of magnitude of the proton lifetime, through the decay p —
et 7%, based on the following operator,
2 af _vyo
OX = _Qﬁijke € eRauRiﬁuLMdeg, (181)
mx
where mx is the scale of this higher dimensional operator, whose typical value is around
10'%GeV, and i, j, k are color indices for quarks, a,f3,--- are spinor indices. Then, the
amplitude M of this decay process should be proportional to m*. Note that the amplitude
M has mass dimension 1, thus we should have M ~ mgm;f with m, the proton mass. Now
take mx ~ 10'°GeV and m, ~ 1GeV, we have the decay width
1 1 2 1 m’

[~ — ~——P L 107%GeV ~ 10%3yr . 18.2
57 2m, M Tor ¢ " (18.2)

(b) Now we consider the first order QCD correction to the estimation above. The correc-
tion comes from virtual gluon exchange among three quarks in the operator. To evaluate

these 1-loop diagrams, we firstly fixed the renormalization condition of Ox to be

URiB
= i€;j0* €. (18.3)

ULjy drks
The 1-loop diagrams are shown in Figure 18.1. The Feynman rules can be written in two-
component spinor notations. The left-handed spinor’s propagator reads i(p-o)/p?, the right-
handed spionr’s propagator is i(p - )/p?, the QCD interaction between quark and gluon is
i[wziﬁ“(t“)ijw” + wkia“(t“)ijwpbj], and the vertex corresponding Ox reads ie;;56*?¢?’. Then
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PN

Figure 18.1: 1-loop QCD correction to the effective operator of proton decay.
the first diagram reads

150 dq —i(—iq-a ) <iq-a )
(i 4)2 a a aB _~'6 — _
a) = 1(19)“€immn (t%) i (E*) i 07 €7 / — I at
( ) (g> ( ) .7( ) k (2 )d q2 q2 I3 Sy q2 5

2 OV _ dq ¢"¢°
= — 92 . ( — —) l]k(s BE’Y 0 (UPO'M),YIA/(O'O—O'M)(;/(S/

3 (2m)d ¢b
2 i 2
=—g> [ — = )ed™® 16677 - =
g ( 3 )69’“ © T 4An)2 e
8¢ 2 .
— = e 00B° 18.4
3(4m)? € HEgk0 € ( )

where the Pauli matrices is simplified as follows,

€ (0,6,)y " (0,6")5° = (50" ea?T")"" = —(51e0,0°5")"°

= —4(o) ec")”’ = —4(e0, ") = 1667, (18.5)

2 2 2

and 050 = —0°0,. In the computation of this

diagram, we also used €mn(t*)m;(t*)nk = —(2/3)€ijx. The coefficient of this equality can
be easily justified by contracting both sides with €;;,. Similarly, we compute the second

in which we used the fact that €*® = ig

diagram, as follows,

" d%q —i [ —ig-& iqg-o
b = 1i(ig 26imn tam'tané‘aﬁe’ws/ _( U) ( 5u>
( ) ( ) ( ) ]( ) k (27T)d q2 q2 H o5 q2 i

2 i 2
=—g* [ — 2 )eip - 40%P0 . =
g < 3)63’“ TIPS ER
2¢% 2
— 2 g 0P 18.6
3(4m)? € HEgko e (18.6)

where we used the identity (6,,)a3(0")ys = 20a608,. The third diagram gives the same result
as the second one. Therefore, we get the counterterm for the operator Ox in M.S scheme
to be

49> (2 2
_ log M 18.
d0x (47)? ( e 8 )’ (18.7)

where M? is the renormalization scale. We further recall that the field strength renormal-
ization counterterm for quarks in QCD is given by
44>

8y = 34 (% —log M2>, (18.8)
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then the anomalous dimension of operator Oy is given by

0 3 492

Therefore this QCD correction will enhance the operator strength by a factor of

log(m3, /A2) \ /2
( log(m2 /A7) ) ’ (18.10)

where A ~ 200GeV, ay = 4 is the coefficient from anomalous dimension, and by = 11 —
(2/3)n; = 7 is the 1-loop coefficient of QCD f function. Taking mx = 10'GeV and
m, = 1GeV, this factor is about 2.5. Then the decay rate of proton is enhanced by a factor
of 2.5% ~ 6.3.

18.2 Parity-violating deep inelastic form factor

(a) We firstly compute the amplitude of the neutrino deep inelastic scattering through
charged current interaction, which reads

MOrp > i X) = 2 alK (L2 Julh)

X /d4weiq'x(X|(Jﬁ(x) + J"(z))|P). (18.11)

Then the squared amplitude with initial proton’s spins averaged and final state X summed

is

%Z IM|? = %4;’% > (u(k')%( ! _275 )u(k)u(k:>( ! Z%’ )w(k’))

spin

X Z/dHX<P|(Ji(x) + JH (@) [ X)(X[(JL(0) + JY(0)|P).  (18.12)

The trace factor can be straightforwardly worked out to be

L= 3 (00 (£ Jabyat (57t

spin
L= 1+
= (S M)
= 2(kuky, + koki, — gk - K + i€ kokl). (18.13)

Then, use the optical theorem, we have

L ; / AL (P| (2 () + J* () [ X )X (J2(0) + J* (0))| P)

= 2Tm (L, W), (18.14)
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with
W) — o / d'x 0 (PIT{J" ()02 (0)}|P), (18.15)
Therefore, the cross section is
_ B3k 1 )
olvp = X) = 2s (2m) (2m)3 2k Z M
1 ys g
= — [ dad - Tm (L, W™ 18.16
25/ v y(47r)2 4ms, m (L ) ( )

and the differential cross section is thus given by
d2

dxdy

2
(vp— = X) = y2GF Im [(kuk), + koK), — guk - K + i€ ko k)W @] (18.17)

2

(b) The lepton momentum tensor obtained in (a) is
Ly = 20k, + kb, — gk - K + i€,k k). (18.18)

Then it is straightforward to see that ¢*L,, = (k — k')*L,, = 0 and ¢"L,, = 0. As a
consequence, any term in W) proportional to ¢* or ¢” is irrelevant. Therefore we can
rewrite the tensor W) in terms of three form factors VVi(V) (1 =1,2,3). That is,

W) = gy 4 prpri) 4 e P, W 4 (18.19)

Then the deep inelastic scattering cross section becomes

d?*c yG%
X
e dy(vp —p X)) =

[Q(k K)YIm W +2(P - k)(P - k') Im W

- 4<(P-k)(q K~ (q-k)(P- k’)) Im Wé”)]. (18.20)
(c) Now we evaluate Im Wl(’;)3 in the parton model. Firstly, W**®) can be written as
1
: ig-w 1 v
W) =3 [ atwer [LaeS £ a€P) T @O aleP).  (82)
f

and be evaluated in terms of Feynman diagrams displayed in Fig. 18.10 of Peskin & Schroeder.
For the first diagram, we have

/(wpxaé<>w(1;f)p+;+kw(1;f)mm
+fu(£)éu(p)7”<1_27 >p+;+iev“(1_27 )u(p)], (18.22)

where p = £ P. Then, averaging/summing over initial/final spin states gives

2 [ ot (5

g+ g5
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11 L1=7 y1-7° -1
+fﬁ(§)z'5tr(p7 5 (17?+51)7 9 )]Qp.q+q2+ie

- | = [(fd@ () (A€2PP P — 2P - qg™)

—1

=, 18.23
2p-q+q* +ie ( )

T (fule) fﬁ<§>)2ieﬂ”papﬂqf’]

where we have dropped terms containing ¢* or ¢” in the last line. Then it is easy to read

from this expression that

1 —_
I W = 2p. q/o d¢ [fa(€) + fa(§)] Im (2p : q+22 +i€), (18.24)
1
v) _ : —1
Im WS _/0 A€ 4€ [ fa(€) + fa(€)] Im (2p_q+q2+i€), (18.25)
1
) _ o, ~1
Wy =2 [ ag [1u©) = () 0 () (13.26)
where 2P - ¢ = ys, and X
- T
Im (2p.q+q2 +i6> = (- ). (18.27)

Note that the second diagram in Fig. 18.10 of Peskin & Schroeder does not contributes, as
explained in the book. Therefore we conclude that

Im W) = w[fd( )+ fa()], (18.28)
Im ;") = [fd< ) + fa(@)], (18.29)
Im Wy = E[fd@:) — fa(@)]. (18.30)

(d) The analysis above can be easily repeated for the left-handed current Ji; of single
flavor f, defined by J]’fL = fy*Ppf where P, = (1 —~°)/2. Then, define

Wi = 2i/d4x eI (PIT{J} (2)J},(0)}|P), (18.31)

and its decomposition,

quz = —g"" Wiy + PP P"Wasp + 1" Byqo Wagr, + - (18.32)
We see that it amounts to the replacement in the final result that d — f and @ — f.
Therefore,
I W,), = [ f;(2) + f7(2)], (18.33)
" Amx
I Wyfy = == [f7(0) + f7(2)]. (18.34)
Im W) = [ff( ) — f7(@)]. (18.35)

ys
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(e) Now we perform OPE on W, Firstly,

/d4:c eiq'xJ]’ﬁL(x)J]’{L(O) :/d%e <qu“PLq( )@y Prq(0) +([7’YMPLQ($)(TYVPL(‘J(O>)
i(if + ¢)

= V' Py 0T )ZWVPLq+<u<—>Vq—> q) (18.36)

Then, the first term in the last line can be written as

(1c79 — g) 1 (q (1&9 - gj) (w”? i +q) )

v p ——

2
q [27(“(18”)) = 9" =1 o (104 )"7]
2 -2

where we have symmetrize the pv indices for the first two terms in the square bracket and

1\3|-

antisymmetrize the indices for the third term, by using the equahtles LAy Py k) =
G+ g — g™y and L (7“7 VP — AP = —iet P, and terms proportional to
g" or ¢¥ have also been dropped. The (anti)symmetrization can be understood by looking
at (18.32), where the terms with no «® are symmetric on uv while the term involving ~° is
antisymmetric on pv. Therefore, when including the second term in (18.36), we should keep
terms of even powers in g for symmetric pv indices and of odd powers in ¢ for antisymmetric

L.
Now, with these understood, and using the definition of twist-2, spin-n operator,

Ogcn)m---un _ (jf’y(’“ (iD#2) - (iD“"))qf — traces, (18.38)

we have,

. ig-x v 2q 1) (2(] n— 2) N)UVL - hn—2
[ = Y 2 Rs) g

n>0, even )

. _g,uz/ Z ( QMl) ( Q,un) O](c V1 pon

n>0, even <Q2)n
3 14 (2q 1)(2q n—l) MN)oUL " hn—1
— i g’ Y GoL fumtl @kt (18.30)
n>0 odd

Then, using <P\O}n)“1"'“"\P) = 2A%PM ... Pn we can get Wiy to be

y 5 2q - P)"2 n y 2q-P)"
W;LL = 8PP Z ( ) 2 n)—l Af o 29# Z ( - 2 n) Af
n>0, even (Q ) (Q )

2q - P)r !
e, prg S BCEIT (18.40)
n>0, odd (@?)

n>0, even
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So we can read out

2q - P)"
Wi =2 % %A}‘, (18.41)
n>0, even
2q - P)"2 n
n>0, even
2 - P n—1
War=4 Y %A’;. (18.43)

n>0, odd (

(f) Now we use Wy, obtained above to derive a sum rule for parton distribution f;,
defined by

fr(2,Q% = % Im Wiz (z, Q2), (18.44)

where © = Q*/v and v = 2P - ¢ = ys. The the analytic behavior of W3, on the v-complex
plane is shown in Fig. 18.11 of Peskin & Schroeder. Thus we can define the contour integral

dv 1
I, z/——ngL(V, Q%), (18.45)

2mi v
where the contour is a small circle around the origin ¥ = 0. This integral picks up the
coefficient of v(»~1 term, namely, I, = 4A?/(Q2)". On the other hand, the contour can be
deformed as shown in Fig. 18.12 of Peskin & Schroeder. Then the integral can be evaluated
as

I3, = 2/0O 2in(Zl) Im Wi (v, Q%) = (QZ;” /01 dz :L’"*lfff(x, Q%). (18.46)

Therefore we get the sum rule,

1
/ dz x”_lff_(x, Q%) = A% (18.47)
0

18.3 Anomalous dimensions of gluon twist-2 operators

In this problem we finish evaluating anomalous dimension matrix 7" in (18.180) of Peskin

2 n n

n q a a

A= T2 ( {Lf fﬂ) (18.48)
& Qg Qg

& Schroeder, given by

where a}, has already been evaluated explicitly in the book. Here we evaluate the remaining

three elements. The needed Feynman rules involving operators (’);") and (9;") are listed as
follows:
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- _ Hv A 2ABAY L \—2 (pAV) . 1.\n—1| gsab
,/f/f/;&\\ 2[g (A k)™ + K2A"AY(A - k) 2kAY (A - k) ]5,

afh bv

n

= —2igf gAY (A k)T (=A k)

ap 5 Py + (cyclic permutations on paky, vbke, Acks) + - - .

In the last expression, we list only terms containing a metric tensor ¢g"”, and the ignored
terms (marked by ---) are irrelevant in the following calculations. To be clear, we have
introduced a source J™ to these operators, namely, we write AL = Jﬁ?.)..un(’)}(c?;” Pl with
Jl(]f.)..“n =A, ---A,,, and A2 = 0. As can be easily seen, this source automatically projects

the operator (’)5]3 to its symmetric and traceless part.

(a) Firstly, we consider a’,, which can be got by evaluating the following two diagrams.

R

With the Feynman rules listed above, the first diagram reads,

(ig)° / (347];(—1) tr [t”’y”%.ﬁ%twk ip] (A- k)"t

= —ig®tr [tt"] / ((;:),4 /0 dzx H(A k) (Y RKEA (K — )] (18.49)

We need to extract terms of proportional to g"(A - p)™ and of logarithmical divergence.
This needs some manipulations on the numerator of the integrand. We firstly evaluate
the gamma trace, keep terms containing at least two powers of k, and shift the variable
k# — k" = k* — xp”*. Then we pick up terms containing two k', which contributes to
logarithmical divergence. At last we symmetrize the indices according to K’k — k"gH /4.

The detailed steps are given as follows.
(A - k)" e [y gy (F — p)]
= [16(1\ : /g)“k;“k”} - [4(/\ k) (k — 2p) - k:g‘“’} - [4(/\ EYHA p)k2g‘“’]
= [mxnm -p)"k”“k’”] - [4nx”(k’ p)(A - K)(A - p)ign
+dn(e = 22" (K - p) (A K)(A - p)" g + 40" (A - p)"K2g" |
= 80— 12 p) (A KA )" g e (A p) g

= [4x”] (A-p)"Kk?g" — [n:p" +n(r —2)2™ 4+ 4™ | (A - p) K2 g
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— [Q(n — 12"t + 4x”_1] (A - p)"K? g
= — (2na" 4+ 22" 1) (A - p) kg™ (18.50)

Then it is straightforward to finish the loop integral,

1

d4k'/ k/2
(@)t (2 = A)?

ig? tr [t“tb](A-p)”g“”/
0
2 2 d
g 2n*+n+2) I'2-7%) ——
- (47‘(‘)2 n<n+1)(n+2) Ag_d/z (A p) 0 g - (18.51)

dz 2(1 — z)(2na™ + 22" 1) /

The second diagram contributes an identical term for n even. The two diagrams sum to

g 2n*+n+2) F2-9)
(Am)2nn+1)(n+2) A2-d/2

: ( — (A p)”5abg””>. (18.52)
Therefore the corresponding counterterm reads

¢ 2(n®+n+2) I2-49)

Se — — 18.53
197 " m)2n(n + 1)(n + 2) (M?)2-4/2° (18.53)

and the anomalous dimension element reads

s, g> 4n*+n+2)
"= —-M—0, = — 18.54
Tis oMY (Am)2n(n+1)(n+2)’ ( )
and thus,
4(n® +n+2)

no= ) 18.55
e T nn+ (n+ 2) (18.55)

(b) Then we consider ay; and ay,. This time we need to evaluate the following four

VAN AYA

The first diagram contributes to aj;, which reads

diagrams.

o [ AR, 0, L 1\2
—2(ig) / (27T)4t 0% . %t 0% (ﬁ)
X [guu(A : k)n + kZAuA,,<A . /f)niz — Qk(pAu) (A . k)n71:|
2 A 1 2(1—x) i .
= — 2ig CQ(N)/W/O dxm[fy (P — F)yu(A - k)
+A(p— BJAA - F)" R — (A(p — )k + Ky — k)A) (A- k)”—l] (18.56)
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To find the pieces proportional to A(A-p)"~* and of logarithmical divergence, we manipulate
on the expression in the square bracket, shifting the variable k* — k" = k* —xpt, extracting
terms with two factors of k¥, symmetrizing the integrand with A*k" — k™g"’ /4, and

throwing away terms proportional to A*(= 0). This gives

[ p = B 0] + [ A — A 28]
— (k- p#+Ep - HK) (A
= [ 2= B R)] + 2A(A- (0 — B) (A~ B2
— (A =Rk (= B) - B} A= (p— (A1) ) (A k)]
= [2na" A RN p) Y+ [ = 207 p) (A K (A p)
+2(n = 2)(1 = z)a" (K p)(A - K)(A - p)"
(1= @) (A p) ]+ 20 (AR (A )
= 2(n = 1)(1 = @)z (A K)(A - p)*t = 2K ( = 2" R p)
= (n = 12" (K p)(A- K)(A-p)"
(0= (1) (- p) (A K)(A-p)"?) — 2na™ (A KA p)
=[S ARy [ = e n(l - 2 ARE(A )
+ [ = (= 1)1 = )2 20| KA )
— [%x”_l + x”ﬂ AK2(A - py»L., (18.57)

Then we have

e [ ara () [

205(N) 2(n*+n+2) I(2-4) o
= (4m)2 n(n?—1)  A2d2 AA-p)" (18.58)

which gives the counterterm coefficient,

g*Cy(N) 2(n* +n+2) T(2-5)

no_ _ 18.

af (47r)2 n(n2 _ 1) (M2)2—d/2 ( 8 59)
Then, in a similar way as in (a), we get

2 2
" g°Ca(N) 4(n° +n+2)
L s R N ) B (18.60)
and for N =3, Cy(N) = 4/3, we get
" 16 (n®*+n+2)
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The second to fourth diagrams contribute to aj,. Now we evaluate them in turn. The
second one reads,

d'% /—iN2  —i
. 2 pace rbde scd -
27 /@ﬂJkJ(W%W
X | g (p+ k) + g7 (p — 2k)* + g™ (k — 2p)”]

x| =g (p+ )+ 52k — ) + gk (20— k)|

X |9 (A )+ R AG(A - 1) = 2k Ay (A - )"

= — 2igCy(G)6" / {;’; /O e H [ — (A - k)hMR — ((A k)2

AN R ) = S(A KA )k )+ AP ) g

! n 1
= — 2ig*C: Gg’“’é“bA-p”/ dz2(1 —2)| — (3+ — )2" — —na™ ' — 2272
(@) (M) [ dr201 =)= (3 5 )a - 5 |
y / d4k1 k/2
)t (2 = A
2 (2 -4
_ q CQ(G) < 4 6 i i _ 4 ) ( 2) (—2)g”y(5ab(A _p>n_ (1862)

(42 \n+2 n+1 n n—1) A4
The third diagram reads (where an additional 1/2 is the symmetry factor),

1 A4k - —i
. 2 2 pacd bcd/ -
g AT | iR

X [g“p(p + k)7 + " (p — 2k)" + g7 (k — 2p)"}

x [gZ/\p(A (p=k) A )" = i A (A p) A k)”*j]

J=1

— 19202(G>gm/5ab</\ p)" i /01 dz [(1 +2)2" 7 — (z —2)(1 - x)j_l}

d*k 1
< | oriap

2 2
g 02(G> vsa F(2 B _> n
= O (A7)

xi(l—% ! + ! + ! )
j:lj j+1 n—j53+1 n—j5+4+2

2 n e—2
_go2<G>[2 1 11+1] (2-2)
7j=2

e PR A2

=

(=2)g"™ (A -p)". (18.63)

The contribution from fourth diagram is identical to the one from the third diagram. Sum-
ming the last three diagram together, we get

204(G 4 4 1 r@2-9) v sa 0
gué2)Qn+nm+ay+mn+m_4223“”)‘zrmrvﬂw 0(A-p)". (18.64)
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Thus the corresponding counterterm is

59:—9202(G> ( ! ;2 —421—2)F(2—_%). (18.65)

(4m)2 \(n+1)(n+2) nn+1) (M2)2=d/2
As a result,

n 0
’ygg:M ( 5+53)

oM
_ 2 4 11 4,
- (4n)? K(n T )nr2) Z )Cz G) fC(N)], (18.66)
therefore, for N =3, Cy(N) =4/3 and C(N) = 1/2, we have,
= : 4 N1z
agg_ﬁ((”+1)(n+2)+n(n+1) 4§j 3 9 f)' (18.67)

18.4 Deep inelastic scattering from a photon

(a) The A-P equation for parton distributions in the photon can be easily written down by
using the QED splitting functions listed in (17.121) of Peskin & Schroeder. Taking account
of quarks’ electric charge properly, we have,

w@ =" [ e (L) reon(2Q)} s
)

3@3@ dz x x
10 qu( Q)= — /7{Pe&e(z)fq(;,cz +Pe<_7(z)f7(?,62>}, (18.69)

d 3Q2 L dz T T
dlog 0 Z { el [f‘f<?Q>+f‘7<?Q>}
P n(50) (18.70
where the splitting functions are
1+ 22 3

Pe(—e(z) == m -+ 5(5(1 — Z), (1871)
Po(z) = M (18.72)
Poy(2) =24+ (1 - 2)?, (18.73)
Py (z) = — %5(1 _2). (18.74)

We take ¢ = u,d, ¢, s, and Q. = +2/3, Q45 = —1/3. The factor 3 in the A-P equations
above takes account of 3 colors. Since no more leptons appear in final states other than
original eTe™, they are not included in the photon structure. With the initial condition
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f(z,Q0) = 6(1 —z) and f, 5(z, Qo) = 0 where Qg = 0.5GeV, these distribution functions
can be solved from the equations above to the first order in «, to be

Q) = Ji(,Q) = “2 o T+ (1 - a7, (15.75)
%\
fo(z,Q) = (1 -y log — 02 )5(1 — ). (18.76)

q

(b) The formulation of deep inelastic scattering from a photon is similar to the one for the
proton, as described in Peskin & Schroeder. The process can be formulated as a two-photon
scattering, with one photon being hard and the other one play the role of proton, which
has the internal structure as shown in (a). Therefore, we can write down the corresponding

current product as

W =i [t LL @) )} ), (18.77)
which can be again expanded in terms of scalar form factors,
q"q” wPa v P-a
HYo " v
W ( g >W1+<P - )(P - >W2 (18.78)

After operator product expansion, the form factor W5 can be expressed as

n 2
W2—3ZQQZQ2 Q‘IQQPTL —ANQY), (18.79)

and AQ(Q2) is a scale-dependent quantity, whose scaling behavior is dictated by the anoma-
lous dimension matrix . This matrix can be evaluated again from the diagrams in Fig. 18.13
in Peskin & Schroeder and in figures of last problem. The only difference is that we should
replace the gluon field with photon field. Therefore it is straightforward to see that a” = 0.
For aj, and al} , we should take away the group factor Cy(N) = 4/3, while for a; , we should
take away the factor tr(t%t*) = §*°/2. In addition, we should also include the factor Q2
corresponding to electric charge of each quark. Then we have,

"1 2

T— 2031 4+4) —— ——— 18.
aj == 2Q3[1+ gj el (18.80)

8Q2(n?+n+2
o _ 80 ), (18.81)
7 nn+1)(n+2)

4Q%3(n* +n +2)
no_ 18.82
a’Yq n(nQ_]_) ’ (88)
al, = 0. (18.83)

(c) The n =2 moment photon structure function can be worked out through the moment
sum rules (18.154) in Peskin & Schroeder, where the matrix elements A7 in our case is
a scale-dependent quantity. This dependence can be found by evaluating the anomalous
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dimension matrix of operator (96(12) as is done below (18.185) of Peskin & Schroeder, but
with different entries, given by

N az, 0 3x 2afW N —g—‘; 0 g—?
_ % 2 2 | _ _ &% _ 16 8
7= 0 agy 3x2a; |= g 0 = o |- (18.84)
a2, a? a? s 16
Yu ~yd Yy 27 27

(d) As can be inferred from (a), the photon structure function f. (x, Q) is originally peaked

at x = 1 for Q = @, and the peak shifts toward smaller x and the peak goes lower and
broader, as () goes large from Q.



Chapter 19

Perturbation Theory Anomalies

19.1 Fermion number nonconservation in parallel E

and B fields

(a) In this problem we investigate the effect of chiral anomaly on the (non)conservation
of fermion number with definite chirality. Let us begin with the Adler-Bell-Jackiw anomaly

equation,
2

e
P L ——
wl 1672

Integrating the left hand side over the whole spacetime, we get the difference between the

Ll o o (19.1)

numbers of right-handed fermions Ny and of left-handed fermions Ny, namely,

t2
/d‘*x D" = /d% Dt — jt) = /d% (7% — % = ANy — AN, (19.2)

t1

where we assume that the integral region for time is [t;, %] and that 9;j° integrates to zero
with suitable boundary conditions (i.e. vanishing at spatial infinity or periodic boundary
condition). On the other hand,

P Fy Fpy = 4" Foy Fiyy = —8F i (S €6 Fjx) = —8E - B. (19.3)
Therefore, the ABJ anomaly equation gives,

2
ANy — AN, = — /d"‘xE .B. (19.4)
272

(b) The Hamiltonian for massless charged fermions with background electromagnetic field

is given by
H = / &’z (7D — L) = — / A3z iy Dy, (19.5)

where 7 = i) is the canonical conjugate momentum of 1, £ = itp])4 is the Lagrangian for
the fermion, and D,, = 0,,+ieA,, is the covariant derivative. Now we expand the Hamiltonian
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in the chiral basis,

H:_/d?»q; (v} k) (_iao‘D ia(-)D> (Zf%)

—/d3x [1/12(10' D)y, — Ph(io - DWR]- (19.6)

(c) Now we focus on the eigenvalue problem of the right-handed fermion 1, namely the
equation —io-Dr = Egi. To be definite, we set the background electromagnetic potential
to be A* = (0,0, Bx', A) with B and A two constants. To seek the eigenfunction of the
form ¢ = (¢1 (), ¢2(x1))Tei(k2x2+k3x3), we substitute it into the equation above and get

¢ = (k2 — eBx')py +i(E + k3 — eA)y, (19.7a)
¢y = 1(E — ks + eA)p1 — (ks — eBx") o (19.7b)

Eliminating ¢, from these two equations, we get a single differential equation in the form of

the harmonic oscillator,

2
" 22 1 R 0] _ 2 —
4 [e B (x - B) E2 4 (ks — eA)? — eBl oy = 0. (19.8)

(d) Now we specify the spatial boundary condition to be the box of length L in each side
and periodic boundary condition. Then the condition ¢ g(z!, 2%, 23) = ¥g(zt, 2? + L, 23) =
Yr(x1, 9,23 + L) implies that ke and k3 are quantized according to k; = 2mn;/L (i = 2,3).
On the other hand, k also has an upper bound since (19.8) shows that the center of the
oscillator would be out of the box if ks is too large. This condition implies that ko /eB < L,
which further gives the maximum value of ny to be (ny)max = eBL?/27. Note also that
the energy eigenvalue does not depend on k,, thus each energy level consists of eBL? /27
degenerate states. Furthermore, we can also write down explicitly the energy eigenvalue

associated with the state labeled by (nq,n3):

E=+ {( 27;"3 - eA>2 ~ (i + %)eB] " (19.9)

(e) Now we consider the case with n; = 0 for simplicity. Then the spectrum reads £ =
2mn3/L — eA. Suppose that the background potential changes by AA = 27 /eL. Then it is
easy to see that all state with energy marked by n3 will turn to states with energy marked by
n3—1. Note that each energy eigenvalue is e BL? /2n-degenerate, thus the net change of right-
handed fermion number is —eBL?/27. Similar analysis shows that the left-handed fermion
number get changed by eBL?/2m. Therefore the total change is ANp — ANy = —eBL? /.
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19.2 Weak decay of the pion

(a) In this problem we study the decay of charged pion. So let us work out the amplitude

for 7 — lv, with the effective four-fermion interaction

4Gy .

AL \/5 (EL’)/MVL)(TLL’}/MCZL) + h.c.

and the relation
(015" (x)[x"(p)) = —ip! fr6®e ™
as inputs. Firstly we recall that
" = Quy*T"Qr + QrY* T Qr,
" = = QIpT QL + QrY T Qr,
where Qr, = (ug,dr)” and Qr = (ug,dr)”. Thus,
1. .. . . ~ . _
§(Ju1 + " — O — %) = QA (r! + it QL = urydr.

Then we find the decay amplitude M (7T (p) — £ (k)v(q)) to be

4iGp

iM = 7 u(q)7“< L= )v(k:) : Lfﬂipu = —Grfru(g)p(l — y5)v(k).

2 V2

(19.10)

(19.11)

(19.12a)
(19.12b)

(19.13)

(19.14)

(b) Now let us calculate the decay rate of the charged pion. We note that the amplitude

above can be further simplified to

iM = —Grfru(g) (g + K)(1 = 75)v(k) = —=Gp famea(q) (1 + v5)v (k).
Therefore we have

STIMP = G fm? tr (g(1+35)(f — mo) (L= 75)) = 8G2f2m?q - k,
where the summation goes over all final spins. We choose the momenta to be

p = (m.,0,0,0), k = (Ex,0,0,k), q=(E,;0,0,—k).

Then the kinematics can be easily worked out to be

2 2 2 2
Eimw—l—me E*k*m”_mg
k= "3 g = R=—"—

2mz 2mg,

The decay rate then follows straightforwardly,

1 dQ k2 k k-1
r—of (& +2) 8Gh2mia-k)

om, | 1672 B E,\E), E,
GEfZ (meN2, 22
 Arm, (m_w) (miz = my)”,

(19.15)

(19.16)

(19.17)

(19.18)

(19.19)
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and we have the ratio between two decay channels,

C(nt +u, 202 . 232
(" > etwe) _ melma —me)” g (19.20)
D(rt — pty,)  m2(m2 —m2)?

Thus to determine the pion decay constant fr, we can consider the channel p*v, only as
a good approximation. With the lifetime of charged pion 7, = 2.6 x 10™8sec as well as m

and m,,, we find that

drmm, [ My 9 _
= — — ~ 90.6MeV. 19.21
/ GQFT7r <mu )(m m ) © ( )

19.3 Computation of anomaly coefficients

(a) By definition, A% = tr[t* {t*,t°}]. Then for the product representation r; x 7y, we
have

A% (1) X 1) =Ty e [t“ 1+1et" {®l1+10t"t*®1+1® tc}}
s [T 1R I} @1+ R+ 7R + 10 {8, ]
E— ([t“{tb, 1Y @1+ [t2, 8] @ 1€ + [t9, 1] @ t°
+tP @ [t ) + £ @ [t 1] + 1@ [t {¢, tc}]>
= tr,, [t {t°, ] tr ., (1) + tr [t {t°, ¢} tr,, (1)

= A™(r)d(ry) + A™(ry)d(ry). (19.22)

On the other hand, as we decompose the representation r; X ro into a direct product of

irreducible representations > r;, we have

Aabc(;n) :trzr[Zt?,{Zt?,Zti}]—trgr(zzz t;})
_Z b, b, {80,651 =) A(ry) (19.23)

i

Note that A®(r) = L+ A(r)d** where d** is the unique symmetric gauge invariant. Then
equating the two expressions above, we get

d(ry)A(ry) + d(r) A Z A(ry). (19.24)

(b) In this part we show that the representation (3 x 3), of SU(3) is equivalent to 3.
Let 1; be the base vectors of 3 representation. Then, a set of base vectors of (3 x 3),
can be chosen to be €;;,9;1. From the transformation rule v; — Uj;;%;, we know that
the (3 x 3), base vectors transform according to €50 Vx — €imnUnmjUnk0jbp. Now, it



19.3. Computation of anomaly coefficients

163

is easy to show that €p,,UnU,;Uny is totally antisymmetric, and thus is proportional to
€k Let us write €pnnUpUnjUni = Céji, then taking U = I shows that C' = 1. Now
we multiply both sides of this equality by (U");,. Since U is unitary, (U');, = (U™1),,, so
we get €pmnUnmiUnk = ez-jk(UT)ip. That is, the base vector €;;,U;U;, transforms according to
€iixU;Up = (UM geojub b = (U*)eginab bk, which is exactly the transformation rule of 3.

Now from A(3) = 1, it follows that A(3) = —1. Therefore A((3 x 3),) = —1, and by
using the equation derived in (a), we have A((3 x 3);) =6 —(=1) =T.

(c) Now we compute the anomaly coefficients for a and s representations of the SU(N)
group. As indicated in Peskin & Schroeder, it is enough to consider an SU(3) subgroup
of SU(N). Then the fundamental representation N is decomposed into a direct sum of
irreducible representations when restricted to SU(3), that is, N = 3 + (N — 3)1. This
decomposition is easily justified by considering the upper-left 3 x 3 block of a matrix in
fundamental representation of SU(N). When this block is treated as a transformation of
SU(3), the first three components of the vector on which the matrix acts form a fundamental
representation vector of SU(3), while the other (N — 3) components of the column vector

are obviously invariant. With this known, we have,
NxN=(3+(N-3)1)x(3+(N-3)1)=3x3+2(N—-3)3+(N-3)°1. (19.25)

On the other hand, we know that N = s+ a while s and a are irreducible. Then we have, by
(a), 2N-A(N) = A(s)+A(a). But we already know that A(N) = 1. Thus A(s)+A(a) = 2N.
Now, to compute A(a), we make use of the SU(3) restriction,

(NxN),=(3x3),+(N—-3)3+5(N—-3)(N—-4)1. (19.26)
Then,
Ala) = A((8 % 3),) + (N = 3)A(3) = A(3) + (N — 3)A(3) = N — 4, (19.27)

and A(s) =2N — A(a) = N + 4.

Now consider totally antisymmetric rank-j tensor representation. Again we decompose
the fundamental representation as N = 3+ (n—3)1. Then the rank-j totally antisymmetric
tensor can be decomposed as

N—j) (N =j+1) (N=3) (N =)

i
(N7), = G=3) (3x3x%x3),+ G =2) (3 x3),
(N—-3)---(N-j—1) ,
+ G-1) 3+ 1's. (19.28)
Therefore,
oo =3 (V) (N =8) (N =)

(7 —2)! (7 —1)!
= - . (19.29)
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19.4 Large fermion mass limits

In this problem we study the chiral anomaly and the trace anomaly in triangle diagrams
with Pauli-Villars regularization.

(a) and (c) Firstly we evaluate the expectation value of the divergence of the chiral current
J"® between the vacuum and the two-photon state, namely the matrix element (p, k[j*°|0).

This matrix element receives contributions at 1-loop level from the following two diagrams:

T <K

In momentum space, the divergence of the first diagram reads

iq M = (—1)<—ie)2/ 534{“ {ﬁzik A; | ﬂp}
—tr {Wt - %1_ e, _IMV”[H;_ M” (1930

The integral is finite, thus we are allowed to shift the integral variable. For the first trace
and the second trace above, we rewrite the gf’ factors, respectively, as follows,

= UFp—L I =P+ =),
V= +p—M—f+Fk+M = +p— M +7°(f — k- M)+2M".

Then, the loop integral becomes

NV S
_tr[ = %1 Al =i Yy a7y Vzwl M}

+2Mtr[ = kl MA[ 1M ”fﬂ; M}} (19.31)

In the expression above, the first and the second lines are canceled by the corresponding
terms from the second diagram with (k, A <> p, ), while the third line is doubled. Therefore
the sum of two diagrams gives

iquj\/l“”’\ = 4de

L W A Ha T
ry[—k—MVZJrMVZer—M

4
_4€2M/d€/ / 2N, 3
e—xk+yp)2—A}

i 2MN 1=
__ die l/dx/ (19.32)
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with
Ny =t [0 = B+ MY = My (L + p+ M)] = —iMe g,
A =M —2(1—-2)k* —y(1 —y)p* — 2zyk - p.

Then the integral can be carried out directly in the M? — oo limit, to be

2
iunﬂuA - _ %Gaﬁ))\ykapﬁ, (1933)

as expected.

(b) and (d) For scale anomaly, the diagrams are the same. Now the relevant matrix
element is given by (p, k|M1|0). Then the first diagram reads

M =i [ (%{ [ﬁﬁ@%m)ﬁ]

11 1
|yt B <p>m]} (19.34)

The first trace vanishes upon regularization, then,

M2 (p)es( 2\ (W d d 19.35
IMY €, (p)ex —ie T yé,2 ), (19.35)

where ¢/ = { — xk + yp, A = M?* — 2zyk - p, and the trace in the numerator is

Ny = tr [(f =k + M)¢(k )<Z+M)¢*( )(f+zz>+M)]
= 4M[M2 *< )€ (p) + (€°(k) - p) ("(p) - k) — (" (k) - €"(p)) (k- p)
+A(e"(k) - 0) ('(p) - 0) — (6*<k> ( )]
= 4M[M?€ *( ) - €5 (p) + (1 — dzy) (e"(k) - p) (¢*(p) - k)
— (1= 2zy)(e*(k) - € (p)) (k- p) + (5 — 1) (€(k) - €"(p)) 7],

where we used the transverse condition k - €*(k) = p - €*(p) = 0, and in the last equality,

the substitution ¢/#¢"" — % g 0. We also dropped all terms linear in ¢ in the last equality.
The integral is then divergent, and we regularize it by dimensional regularization. Then

after carrying out the loop integral, we get

M () (R) = 5 [(€(R) - € 0) (k- p) = (€ (k) - p) (€ (p) - ¥)]
(1 — 4zy) M?
/ du / M2 — (19.36)
Then, taking M? — oo limit, we find
MG EE) = o5 [(E0) - @) E-p) — () D) () K] (1937

The second diagram is obtained, again, by the exchange (k, A\ <> p,v), which gives the
identical result. Therefore we finally get

M) = (0 @) Ep) — (CE D) ()R] (1939)
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Chapter 20

Gauge Theories with Spontaneous
Symmetry Breaking

20.1 Spontaneous breaking of SU(5)

We consider two patterns of spontaneous breaking of SU(5) gauge symmetry, with an
adjoint-representation scalar field ® picking up vacuum expectation values

(P) = Adiag(1,1,1,1,—4), (®) = Bdiag(2,2,2,—-3,-3), (20.1)
respectively. The kinetic term of the scalar field in the Lagrangian is
Lin. = tr ((D,@)T(D4®)) = tr (2, + g[4,, @) (9@ + glA*, @]) ). (20.2)
Then the mass term of gauge bosons after symmetry breaking is given by
AL = g tr ([An @]T[A", 0]) = —g Az A tr ([T, (@)][1", (@)]). (20.3)

To analyze the gauge bosons’ spectrum, we note that there are 24 independent generators
for SU(5) group, each of which can be represented as a 5 x 5 traceless hermitian matrix.
Then, for the first choice of (®) = diag(1,1,1,1, —4), we see that for the generators of the

form
T4) .
T = 0 and T = mdlag(l,l,l,l,—él),

where T is a 4 x 4 matrix being any generator of SU(4) group, the commutators vanish.
That is, a subgroup SU(4) x U(1) remains unbroken in this case. Then, for the rest of the

generators, namely

00001 0 0 0 0 1 00 00O
100000 100000 100001
500000, 500000, 500000,
000O0O0 0 00O0O 000O0O
10000 -1 0 0 00 01000
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etc, it is easy to calculate the commutators to get the trace equal to —25A42/2. Thus the
corresponding components of gauge bosons acquire mass M4 = 5gA. In the same way, we
can also analyze the case of (®) = diag(2, 2,2, —3, —3). This time the unbroken subgroup is
SU(3) x SU(2) x U(1), and the remaining 12 components of gauge bosons acquire a mass
equal to M4 = 5gB, as can be found by evaluating the corresponding commutators.

20.2 Decay modes of the W and Z bosons

(a) The relevant interaction term in the Lagrangian reads

AL = \[gW+ ( Z V2L7 e;r + ZUJL’Y#dEL), (204)

J2,C

where the sum on 7 goes over all three generations of leptons, the sum on j goes over the
first two generations of quarks, since m; > my,, and the sum on ¢ is due to 3 colors.

Now consider the decay of W boson. The amplitude of the decay into a pair of fermions
is

el (20.5)

: ig _ L
iM = E@(’f)ﬂ(m)v (

where €, is the polarization vector for WJ , and the labels for momenta are shown in Fig.

20.1. Thus the squared amplitude with initial polarizations averaged is

f f f f
P1 P2 P P2
k k

Figure 20.1: The decay of W+ and Z into fermion-antifermion pairs. All initial momenta go
inward and all final momenta go outward.

5

o (5]

1 eGP kK, 1—7°
3 2 Ml :?(_g"” mgv>tr pﬂ“( 2

spin
2 k-pik - po
- . 2—————— ). 20.6
3 (Pl P2 + 2, ) ( )
The momenta in the center-of-mass frame can be taken to be
k = (mw,0,0,0), p1=(p,0,0,p), p2 = (p,0,0, —p), (20.7)
and energy conservation requires that p = my /2. Thus we get
= Z M| = —g mey, (20.8)

spin
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and the decay rate

1 d3p1d3py 1 amyy
dr = —*mZ, ) 2m) W (k —p, —py) = —— 20.9
/ 2y / (2@62&2&(39 mW)( )0k = =) = o (209)

where we have used ¢ = e/sinf,, and a = e?/4w. For each quark final state we multiply
the result by a QCD correction factor (1 + QT) Then, taking account of 3 generations of

leptons and 2 generations of quarks with 3 colors, we get the partial decay rate of W™ into

fermions,
D(WH = efv) = — W~ .23GeV; (20.10)
12sin” 6,
PV = uydy) = g (14 22 ) = 0.70GeV: (20.11)
4sin“ 0, s
D(W+ = fermions) = m—?( 62 ) ~ 2.08GeV. (20.12)
12sin° 0, s

and also the branching ratios BR(IW* — ef1;) = 0.11%, and BR(W* — u;d;) = 0.34%.
Note that the fine structure constant at myy is a(my) ~ 1/129.

(b) In the same way, we can also calculate the decay rate of Z —fermions. The relevant
term in the Lagrangian is

AL = cosgew Z, Z Fiy (13 = sin2 0,Q:) fi, (20.13)
where the sum goes over all left- and right-handed fermions, including 3 generations of
leptons, and the first two generations of quarks with 3 colors, while I? and Q; are associated
3-component of the weak isospin and the electric charge, respectively.

Then we can write down the amplitudes of the decay of Z° into a pair of fermions ff
with specific I® and Q, as illustrated in Fig. 20.3,

M= 19, (k;)a(pl)w[(ﬁ ~ sin? er)(1 _275) — sin? 0,0 L4y )}v(m)

cosby, " 2

-7 ) ~ sin? er] v(ps), (20.14)

-9 (k)ﬂ(pl)v“[f?’(

cosb, "
the squared matrix elements,
1 92 k kl/
LS e o P (g k)
3 Sgpi; iM] 3cos20, \ m?

o [’%W(%ﬁ(l ) = sin?0,Q)p,1" (3171 = 77) — sin? er)]

492 . 2 2 2k - p1k - pa
Sy (41100 (Y] (e 2

. 4927”22 [(
~ 3cos6?

1P —sin?0,Q)" + (1)) (20.15)
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and the partial decay rate,

D(Z° = ff) = BszzwmeS2 i [(513 — sin?0,Q)" + (513)2] (20.16)

We should also multiply the result for quarks by the QCD factor (1 + < ) Now we list
the numerical results of partial width and the branching ratios for various decay products

as follows.
i L(ff)/GeV_ BR(ff)
Vele, Vyly, Vrls 0.17 6.7%
eet, ppt, Tt 0.08 3.4%
ull, cC 0.30 11.9%
dd, 55, bb 0.39 15.4%
All fermions 2.51 100%

20.3 e"e” —hadrons with photon-Z" interference

(a) It is easier to work with amplitudes between initial and final fermions with definite

chirality. In this case the relevant amplitude is given by*

(12 + s)Uf = suQf) ¢
StCa ¢* —my]’

(20.17)

iM = (ie)QU(k’z)’Yuu(kl);_Qiu(pl)’yquU(pQ) - Qf +

where I3 = —1/2 or 0 when the initial electron is left-handed or right-handed, so as I} to the

final fermion. The momenta is labeled as shown in Fig. 20.2. Then we can find associated
f f
P1 y2)

ki ks

e et
Figure 20.2: The process of ete™ — ff via the exchange of a photon/Z° in s-channel. The

directions of k;’s and p;’s are inward and outward, respectively.

differential cross section to be

do - 7 ma?

dcosQ(elgeL = frfi) = 9s (1+ cos0)*Fro(f), (20.18a)
do = Ta?

dcosQ(eEez = Jufr) = 26 (1 = cos0)*Frr(f), (20.18b)
do oz ma?

dcosQ(eJLreR = Jrfi) = s (1 — cos 0)*Frr(f). (20.18¢)

*In this problem we simplify the notation by s,, = sin#,, and ¢,, = cosb,,.
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do 4+ _ Ta?
dcosQ(eLeR — fofr) = 2s

in which « is the fine structure constant, s = ¢? is the center-of-mass energy, and the F
factors are defined as follows:

(14 cos 0)*Frr(f), (20.18d)

Fro(f) = Qs + (3 —su )5(2122_5 w@r) s—mzzj—imzrz i (20.19)
Fuatf) =, - & = O T 2 (20.20)
Fuath) = |, - _Cf”Qf) T, 2 (2021)
Fre(f) = |Qs + S’zgf S—mQZiimzrz 2 (20.22)

where we have added the correction from resonance by using the Breit-Wigner formula.
Summing up the four expressions in (20.18), averaging the initial spins, and integrating over
the angle 0, we get finally the unpolarized cross section

’/TO./

o(ff) =

When the final state particle f is a quark, one should multiply the result by 3(1 + “7) where
3 is the color factor, and (1 + QT) is the 1-loop QCD correction.

For the final fermion being muon (I} = —1/2, Q; = —1), up quark (I} = 1/2, Q = 2/3),
and down quark (7 ]33 = —1/2, Qf = —1/3), we plot the corresponding cross section as a
function of center-of-mass energy Ecy = +/s in Fig. 20.3.

i [ L)+ Fun(f) + Fru(f) + Fan(f): (20.23)

104 =
1000+
el
=
5 100}
10}
50 100 150 200
Ecm/GeV

Figure 20.3: The cross section o(ete™ — ff) as a function of center-of-mass energy Ecy. The
black, blue, and red curves correspond to ff = u~ut, v and dd, respectively.

(b) Now we calculate the forward-backward asymmetry A7 ., defined to be

Al oFr—0B _ (fol—fo )d cos6(do/d cos 6)
" op+op (fo —l—f )d cos 6( do/dcosf)

(20.24)
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Then from (20.18), we find

2

08 = Gye \TFLe() + Funl(f) + Fru(f) + TFra(f)|. (20.25)
7= T [FuslF) + TFun() + TFs(1) + Fan(f)] (2026
Thus
;3 Fu(f) = Fur(f) = Fro(f) + Fre(f)
A8 = L T () + Forlh) ¥ Frld) + Fanlf) (2027)

Again, we plot A{er as a function of Ecyy, for f = p™,u,d, in Fig. 20.4.

0.6F
04r
02F
0.0

Ars

=021
—_04F

-0.6

Figure 20.4: The forward-backward asymmetry A{; g as a function of center-of-mass energy Ec.
The black, blue, and red curves correspond to ff = p~ut, ut and dd, respectively.

(c) Recall the definition of F’s, we find, on the Z° resonance (s = my),

7 — sw) ([} — 53,0 ’ 1-2)Q 2
rutn ~ [E=S S g n [
IB—S%UQ 2 12UQ 2
puty) ~ [ 2] ) = | % 72]
therefore,
1 2 2 4 3 2 2 2 2
w3 16 -) —slI - 200" — (207 3 e i s
G ) () e A 0

(d)

T 1 m% [(1

2\2 |, 4 3_ 2 2 20,)2
3my sheh, T3 L2 Su) + S“’} [(If —5uQp)" + (5uQy) }

_ 12 ( amy [(% ey Sf"D ( amg [([jz —s2Qs) 4+ (SquffD

m2I'% \ 6s2c2 6s2,c2,
120 I(Z2° = ete ) T(Z° — ff)

= . . 20.2
m 7 (2029)

Opeak =
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20.4 Neutral-current deep inelastic scattering

(a) In this problem we study the neutral-current deep inelastic scattering. The process is
mediated by Z° boson. Assuming m is much larger than the energy scale of the scattering
process, we can write down the corresponding effective operators, from the neutral-current
Feynman rules in electroweak theory,

2

g _ _
AL = 4771%4/ (V"}/“)PLV[U”)/M((l — %S?U)PL — %sfuPR>u

+ Jw((l — 255 PL — %sfuPR> d] +h.c., (20.30)

where P, = (1—+°)/2 and Pr = (1+7°)/2 are left- and right-handed projectors, respectively.
Compare the effective operator with the charged-operator in (17.31) of Peskin & Schroeder,
we can write down directly the differential cross section by modifying (17.35) in Peskin &
Schroeder properly, as

2
Loy o) = SR 22) 4 281 =) £ulo)

dzdy

(1= 3s0)" + g (1 =) | fulw)

B+ (- 5400 o)

st + (- 22)°0 )] )}, (20.31)
o= oX) = ST [t (1= 4200 - 47 )

s (=300 - fule)

(= 4s2)" st - )| fale)

+ (L= 3s0)" + sl - yQ)} f*(x)}- (20.32)

(b) For the neutrino scattering from a nucleus A with equal numbers of protons and
neutrons, we have f, = f; and f; = f7. Then the differential cross sections reads

20 (VA — v X) = GFSI{[l_82+%Si+§S4(1_ )] ful)

dxdy T 2 w 9
+ o+ (53— 80+ Fsu) (1 = yQ)}fu(w)}, (20.33)
d? G2
oo p = 7X) = T[R4 (4 - b+ §5) (1= ) )
+ [ —sh+gsi+gsi(l— yQ)}fu(x)}. (20.34)

Recall that for charged-current neutrino deep inelastic scattering, the differential cross sec-
tions are given by (17.35) in Peskin & Schroeder. Thus it is easy to find that

d*o /dzdy(vA — vX) 1 fu(2)(A = y?) + fa(2)

RV:<PﬂhﬁuuA-+M<X):“§_”w+ <1+th()+fdxﬂl—yﬁ

), (20.35)
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Figure 20.5: Weinberg’s nose with r = 0.4. See problem 21.4.
- d%o/dady(vA — vX 1 5 w @ 1 —y)?
do/dxdy(vA — ptX) 2 fu(x)(1 —y2) + fa(z)
where

fulw) (1= y*) + fulz) _
ful@) + falz)(1—y)2 (20.37)

(c) The plot “Weinberg’s Nose” with r = 0.4 is shown in Figure 20.5.

20.5 A model with two Higgs fields

(a) The gauge boson mass matrix comes from the kinetic term of scalar fields,

(D,u¢1) (D 1) + (Dygh2)T(DH o),

with D019 = (@L — %gAZ e — %g’Bﬂ)gbLQ. After ¢ 5 acquire the vacuum expectation value

L (1)102)’ we observe that each of the kinetic terms gives rise to mass terms for gauge bosons

V2
similar to the ones in the standard electroweak theory. Thus it is straightforward that the

masses of gauge bosons in this model is given by the replacement v? — v? + v3.

0
1,2
to that all particle excitations generated above this solution have positive squared mass m?.

(b) The statement that the configuration \/Lﬁ (v ) is a locally stable minimum, is equivalent

Thus we investigate the mass spectrum of the theory with the vacuum chosen to be \/Li (UIOQ).

Firstly, we parameterize two scalar doublets as

b = <L ' ) (i=1,2) (20.38)

and substitute this parameterization into the potential,

V = — 120161 — 120hds + M(610)% + Aa(dhhs)?
+ Xs(B101) (0hd2) + Aa(dld2) (8501) + As ((6¢2)” + hc.). (20.39)
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Then the mass term of various scalar components can be extracted, as follows.

o +
Linass = ()\4 + 2>\5)U1U2 <7T1_ 7T2_> (Uz—/ijl Ul/ij2> (z}F)
2

. 0
+ 250102 <7T(1J 7T8) (UQ_/fl 1)1/1)2) (ié)

)\1(1)1/'1)2) )\3 + )\4 —+ 2)\5 hl
— hi h . 20.40
vz ( ! 2) ()\3 + )\4 + 2)\5 >\2<U2/U1) hg ( )

The eigenvalues of these matrices are easy to be found. For charged components, there
is a zero mode corresponding two broken directions in SU(2), and the mass of the other
charged scalar is given by m? = —(\4 + 2X5)(v? 4+ v3). For pseudoscalar components, there
is also a zero mode corresponding to the rest one direction of broken SU(2), and the mass
of the other pseudoscalar is m? = —45(v? 4 v3). Finally, for neutral scalars, the two mass

eigenvalues are given by the roots of following equation,
mi — (Mof + Av)mi + [Mda — (A3 + Ag + 2X5)°] = 0. (20.41)
Therefore, to make m? > 0, m}% > 0 and m2 > 0, it is sufficient that

A+ 2)\5 < 0, )\5 < O, )\1, Ay > O, Ao > ()\3 + A+ 2)\5)2. (2042)

(c) From the mass terms in (b) we can diagonalize the charged scalar mass matrix with

7\ [ cosf sinf) (@7
(qb*) B (— sin 3 cosﬂ) (7‘(’;) ’ (2043)

where 7" is the Goldstone mode and ¢ is a physical charged scalar. Given that ¢+ to get

the rotation matrix

the physical mass, it is easy to see that the rotation angle can be chosen to be tan 8 = vy /v;.

(d) Assuming that the Yukawa interactions between quarks and scalars take the following

+ 1
Em = — <77/L JL) /\d Zrl dR + )\u ﬁijz UR
75111 s

where we have suppressed flavor indices and neglected neutral scalar components. We

form,

+he, (20.44)

focus on charged component only. Then, with Peskin & Schroeder’s notation, we make the
replacement u;, — Uyup, d, — Ugdy, up — Wyug, and dg — Wydgr. Then, together with
A = UdDdI/V;r and A\, = UuDuWJ where Dy and D, are diagonal matrix, we have
1 - _
Em = - —F (UldLDddR + UQULDuU,R)

V2

- QVCKMDddRTFf -+ CZLVCTKMDUURW; -+ h.c. (2045)
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From the first line we see that the diagonal mass matrix for quarks are given by m, =
(v1/vV2)D, and mg = (v2/v/2)Dg. We further define v = /v? + 03 and note that 7, =
—¢tsinfB---, 15 = ¢ cosB + -, then the Yukawa interactions between charged boson
and quarks can be written as

2 _
L, = — i (17,[/‘/(;Kl\/[TnddRﬂ'l+ —+ dLVCTKMmuuRW5> + h.c.
U1

V2

:>T (ﬂLVCKMmddR¢+ tanﬂ + JLVCTKMmuUR(bi cot ﬁ) + h.c.. (2046)



Chapter 21

Quantization of Spontaneously
Broken Gauge Theories

21.1 Weak-interaction contributions to the muon g — 2

In this problem we study the weak-interaction corrections to the muon’s anomalous
magnetic moment (AMM). The relevant contributions come from the W-neutrino loop and
Z-muon loop, together with the diagrams with the gauge bosons replaced with the cor-
responding Goldstone bosons. Here we will evaluate the W-neutrino loop diagram with
Feynman-'t Hooft gauge and general R, gauge in part (a) and part (b) respectively, and
Z-muon diagram in part (c).

(a) Now we come to the W-neutrino loop diagram and the corresponding Goldstone boson
diagrams, shown in Fig. 21.1.

kv

Figure 21.1: The weak-interaction contributions to muon’s EM vertex. These four diagrams

contain neutrino internal lines in the loops.

The Fig. 21.1(a) with W-neutrino loop reads

SITH(q) = (i‘g)g / ((;:;4 [9°2(2k + @) + g™(—2q — k)P + g™ (q — k)*]

_igpa _igAH — I\ O 1_’75 i K 1_’75
xkg_mw(qm _mW“W( 5 >p,+k7( - )ul)

_ /d4k// /M k,Q AP (p’)[(2k+q)“7”(zﬁ’+%)%

177
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5

v )u(p), (21.1)

Fk=2)( + B+ B - ) (5
where

K =k+zq+yp,

A= (1—y)my — (1 —2)¢" —y(L —y)p” + 2xyq - p'.
To extract the form factor Fy(¢?), recall that the total diagram can be written as a linear
combination of (p'+ p)*, ¢*, v*, and parity-violating terms containing «°. Only the (p’ + p)*
terms contribute to Fy(¢?) through the Gordon identity. With this in mind, now we try to

simplify the expression in the square bracket in (21.1), during which we will drops terms
proportional to ¢* or 4 freely, and totally ignore the 7° terms.

[k + " (F + )] + [k =200 + ] + [+ B - B
- |- 2(2k’ + (1= 20)q = 200)" (K — og + (1= p)p) |
FF =@ ) (F g+ (0= )]
[7“ —ag+ (1 —y)p)(— K+ (1+x)g+yp’)]
= [4y(1 = yymp"| + 20+ 2y — 2| + [2(=1 = 2+ y)mp"]
= —(1=y)B—2y)m@’ +p)"

iochvq,
= 2(1 —9)(3=2y)m?-
(1 —y)( y)m o

The steps of this calculation is basically in parallel with the one of Problem 7.2. Here we have

written the mass of muon as m instead of m, to avoid confusions. Thus the contribution to
the muon’s AMM from Fig. 21.1(a) is

19/ /dx/ g g 2062
o 7

2 7 GFm

= 21.2
3 647r mi, 3 87r2\/_ (21.2)

where we have used the approximation my > m, and set ¢> = 0 in the second line. The
Fermi constant Gr/v/2 = ¢?/8m3,.
Fig. 21.1(b) and 21.1(c) read

5(b)rw(q) _ 9 Tmw —iv2gm dk ghe ! '9p0
0 V2 2 my (2m)*7 k2 —md, (¢ + k)2 —mi,
3 1-— 75 1 1-— 75
! 7 : 21.
u(p)< 5 )zﬁ’Hﬂ ( 5 )u(p) (21.3)
st P4 (q) ig  —mw —ivV2gm d*k up —po i
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xa(p’)v"(1_275>p,jrk(1j;75)u(p). (21.4)

Through the calculation similar to that of Fig. 21.1(a), it is easy to show that these two
diagrams contribute the same to the AMM, which reads

1 Gpm2

PR 1 (21.5)

Finally, Fig. 21.1(d) reads

—iv2gm \ 2 dk i i
K00l = (27 [
J (9) my (27r)d( 9) k? —m%, (¢ + k)2 —m?3,

B 1—7° 1 1+7°

/ . 21.6

<) () () (21.6)
But it is not difficult to see that the contribution to the muon’s AMM from this diagram
is proportional to (m/my)*, which can be omitted in the limit my > m, compared with

the other three diagrams. Therefore we conclude that the AMM of the muon contributed
by W-neutrino and corresponding Goldstone boson’s 1-loop diagrams is

'87T2\/§ 3 8122

2 2 2
m )} Grm 10 ' Grm (21.7)

7 1 1
a“(lj): §+§+§+O<m%‘/

(c) Now we come to the second set of diagrams as shown in Fig. 21.2.

nt nh

(a) (b)

Figure 21.2: The weak-interaction contributions to muon’s EM vertex. These two diagrams
contains no neutrino internal lines.

Firstly the Fig. 21.2(a) reads

a lg 2 ddk _ig o

4y, 2m)d (p' + k)% —m%

) i
x a(p' )y’ (4sh, =1 =7°) my—

- 1_61cg£ / (C;jrk;/d /01 do /le dy ﬁﬂ@’)v” [(% +m)y(k + ¢ +m)

(42 = 120k = m)y (K + g — m)|u(p), (21.8)
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where we have omitted terms proportional to 7°, as indicated by “=" sign, and

K =Fk+xq+yp,
A=1—y)m®+ymy —x(1—a2)¢® —y(1 —y)p” + 2zyq - p'.

We will again focus only on the terms proportional to (p’ + p)*. Then the spinor part can
be reduced to

APy [+ m)y (K g+ m) + (355 = )28 = m)y* ( + ¢ —m)| 3,u(p)

= [Qy(3 +y) — (45, —1)* - 2y(1 - y)] 2m? - u(p') 70, u(p).

2m

Thus the AMM contribute by this diagram is

_ig® / d*k /1 dx/lxd 2-2m?2y(3 +y) — (452 — 1)2- 2y(1 — y)]
6 ) ot )y L (k? = A)?

ST ) o1

On the other hand, the Fig. 21.2(b) only contributes terms of order m*/mg;, that can be
omitted, as can be seen from the coupling between the Goldstone boson and the muon.

Thus we conclude that the total contribution to a,(Z) from the two diagrams in Fig. 21.2
at the leading order is given by (21.9).

21.2 Complete analysis of ete™ — WTW~

In this problem we calculate the amplitude for the process ete™ — WTW ™ at tree level
in standard electroweak theory. There are 3 diagrams contributing in total, as shown in

Figure 21.3.
W w- Wt W=

4 D2 ‘/JJV

Y 70
k1 ko v

_ _ e e
e et e et

Figure 21.3: The process e e™ — WTW ™ at tree level. All initial momenta go inward and all
final momenta go outward.

We will evaluate these diagrams for definite helicities for initial electrons as well as
definite polarizations for final W bosons. The initial and final momenta can be parameterized
as

kY = (£,0,0,E), Py = (E,psinf,0,pcosh),
ky = (E,0,0,-E), py = (E,—psinf,0, —pcosf), (21.10)
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with £% = p? +m?¥,, and electron mass ignored. For initial electron and positron, the spinors
with definite helicities can be chosen to be

ur (k) = V2E(0,1,0,0)7, vr(ks) = V2E(1,0,0,0)7,
ug(k) = V2E(0,0,1,0)7, vr(ks) = V2E(0,0,0,1)7. (21.11)

For final W bosons, the polarization vectors are

€, (m) = \%(O —cosf, —i,sinf), € (p2) = \%(O,cos 0, —i, —sin6),
€ u(p1) = %ﬁ(o —cosf,1,sin ), € u(p2) = \%(0 cosf,i, —sin6),
€r,(p1) = W( ,—Esin®,0,—Fcosf), €,(p2) = W(p,Esm@,O,Ecosé’). (21.12)

It is easy to see that for initial electron-positron pair, only two helicity states ejej,
and epe} contribute nonzero amplitudes. This is because the first two diagrams with s-
channel gauge bosons vanish for the other two possibilities e; e} and epe}, due to angular
momentum conservation, while the third diagram vanishes since the weak coupling vanishes
for right-handed electron and left-handed positron. With this known, we can write down
the amplitudes for e; e}, and epe} initial states, as follows. Generally the amplitude reads

Megef, = WHW™)

ie(—1 4+ s2) —i
- { [ R o A At (arey el L0
X (kz)%uL(kl) (" (p2 — )™+ N (=1 — 2p2)* + M (2p1 + p2)”]

el e vl LA USSR

— (p1 +2p2) - € (p1>¢ (p2) + (2p1 + p2) - 6*(P2)¢*(P1)>UL(131)
ie? 1

— 5o Uulk2) ¢ (p) (Ky — o) (p2)ur (k) (21.13)

2
255 U

(2 ) ootk - ‘) s ) )
-l

and,

iM(eger — W*W )
, - ies? —i , _
= [T R e T e g (90T

x [ (p2 — p1)* + 0N (=p1 = 2p2)" + 0 (2p1 + p2)”] € (p1)€s (p2)
2
my

= ie’ ———2—~p(ky) <€*<p1) € (p2) (P, — P,) — (01 + 2p2) - € (p1)¢" (p2)

s(s —m%)

+ 21+ p2) - € (P2)f" (p1) ) un(ka), (21.14)
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In what follows we need the inner products among some of these vectors, as listed below.

P1 P2 = E? +P2 b1 66(])2) =D2- 68(]91) = iﬂa
Ej_(pl) . 61(172) =€ (p1)-€(p) =1, eo(p1) - €5(p2) = Em% (21.15)
We also need

ur(k2)p,ur (k1) = —vr(ke)p,ur (k1) = 2Epsin 6, (21.16)
_ . F1+ cosf
Up(k2) ¢ (p1)ur (ki) = 2E<T)a (21.17)
_ . F1 — cosf
Ur(k2) ¢ (p2)ur (k1) = QE(T» (21.18)
v (k)¢ o(pr)ur(ky) = —vp(ke)fo(p2)u(ks) = 2Em—:/ne, (21.19)
T)R(kg)pluR(kl) = —@RUCQ)pQUR(/ﬁ) = —2Epsin 0, (2120)
_ . F1 + cosb
Up (ko) ¢ (p1)ur (ki) = _2E<T)a (21.21)
_ . F1 — cosb
Ur (ko) ¢ (p2)ur (ki) = —2E<T>7 (21.22)
_ . _ . 2E?sin 6
U (k2)fo(pr)ur(kr) = =0 (ko) (p2)ulks) = R— (21.23)

We first consider e ef; — WTW ™. In this case we take u(k;) = ur (k1) = V2F(0,1,0,0)"
and v(ke) = vr(k2) = V2E(0,0,1,0). Then each of the final W particle can have polar-
ization (4, —,0), which gives 9 possible combinations for (W, W~). Now we evaluate the

corresponding amplitudes in turn.

iM(epeh = WiHWe)
2 my 1 1 ( _ 4ABp(E® +p?) N 16E3p
s(s—m%) 2s2s— M2 mé, mé,

N ie? 1 2F(—3E%*p+p* — 2E?cosf)sinf

> sin

252 u m2,
2

.92 S my 9

=— . . B(3 —
@ o Ty 56 )
1 2 S 9 4 cos b ]

B - - 6 (21.24

28a[(1+52+2ﬁ0058 s—m%)ﬁ(g ﬁ>+1+ﬁ2+2BCOSQ:|}SIH ( )

iM(epef = WHWa,) =iMl(eger = WELWg)

o[ mi 1 1 <8E2p :Fl—ircosQ)
= ie —
s(s—=m%) 282 s—MZ|\ my V2
ie? 1 2F +1 4+ cosf

— — — . = (E*(2cos@ F 1)+ 2Ep + p?
22 mW( (2cos 1)+ 2Ep %+ p7)

V2
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21.3. Cross section for du — W™~
2 1 +1 -2 0—2 2 +1 0
2162{ Z_g_ ( S cosb —25F P )]\/g T80 (91.95)
s —m% 253, \ s — m7 14 2425 cosb myw V2
iM(e _eR — VV+ W)
1 1 ) ie? 1 .
[ s—mQZ 2828_M2}<—4Epsm€>—|—Eg~2E(p+ECOSQ)sm9
2(p + cosb) ,
_ 6 21.26
[ s—mZ +2$2 (s—MQﬁ (1+ %2425 cosb) i ( )
iM(epef, — W(Q)W(;))
1 2 2(+1 — 0) sin 6
=— ﬁ— 2E%(F1 + cos ) sinf = ie” 2 cos f) sin (21.27)

252 u 2s2 (14 %2+ 20 cosb)’

Though not manifest, these expressions have correct high energy behavior. To see this,
we note that 8 ~ 1 — 2m¥,/s when s > m¥,. Then, for instance, the amplitude for two
longitudinal W final state becomes

5 S

2
, my 5
iM(epef, — W+ W) = —ie” - {s ) -B(3 = p%)

2
dmy,

1 2 5 9 4cos ,
282 {(1+ﬂ2—|—2ﬁC089 a s—m%)ﬁ(?)_ﬂ )+ 1+B2+25c086]}8m9

ie? (1+2cosf)sinf
= — 1/s). 21.2
253, 1+ cosf +0(1/s) (21.28)

Then we can plot the azimuthal distribution of the corresponding differential cross section
at s = (1000GeV)?, as shown in Figure 21.4.

Next we consider the other case with epe; initial state. Now there is no contribution
from wu-channel neutrino exchange. The amplitudes for various polarizations of final W pairs
can be worked out to be

2
5 my

iM(eger = Wi, W) = B(B* —3)sinb, (21.29)

s —m% 4m,
iM(ege] = WHW L) = iM(ege) = Wi, W)
, m% /s +1—cosb

= ie 21.30
pyre mwﬁ N (21.30)
2
iM(egef = WLW L) = ie>—~25Fsind (21.31)
- Z
iM(ege; — WL W) = 0. (21.32)

21.3 Cross section for du — W™y

In this problem we compute the tree amplitude of du — W™+ at high energies so that
the quark masses can be ignored. In this case the left-handed and right-handed spinors
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Figure 21.4: The differential cross section of e~et — WTW ™ with definite helicity as a

function of azimuthal angle at s = (1000GeV)?.
! W g w=— 7 W=
P s b1 D2

ky ky N\
d a ¢ "

Figure 21.5: The process du — W™~ at tree level. All initial momenta go inward and all final

momenta go outward.

decouple and only the amplitudes with d;ug initial state do not vanish. To calculate it, we
firstly work out the kinematics as follows.

klz(anaO)E)v plz(p,psing,o,pcosé’),

k2 = (anu 07_E>7 b2 = (EW7_pSin9707 _pCOSQ)7 (2133)

where p = E —m}, /AE and Ey, = E+ m3,/4E. The initial spinors of definite helicities are
given by

ur (ki) = V2E(0,1,0,0)7, v (ks) = V2E(1,0,0,0)7, (21.34)
while the polarization vectors for final photon and W~ read
€, (p1) = \/LE(O, —cos 0, £i,sin 0), €, (p2) = \%(0, cosf, +i, —sinf),
€ru(p2) = ﬁ(p, Ewsin6,0, By cosf). (21.35)
Then the amplitude is given by
iM(dpig — AW = \;%i - _N;l%v - 3\1/%2% ( —in + 2];[“ ) (21.36)
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where

= Op(ka) [€"(p1) - € (P2) (P, — ) + (01 +2p2) - € (p1) ¢ (p2)

— (2p1 + p2) - € (p2)¢" (p1) Jur (k) (21.37)
)¢ (p2) (ky — p )¢ (p1)ur (k) (21.38)
)¢ (p1) (k1 — p,) " (p2)ur (). (21.39)

= op, (ks
= op (ks

Now, using the physical conditions €*(p;) - p; = 0, Fyur (k1) = 0 and o7 (ko)fs = 0, we can
show that N, = N; — N,. In fact,

ur, (ko) [2€¥ (p1) - € (p2)p, + 2p2 - € (p1)¢" (p2) — 2p1 - € (p2)¢" ()] ur(k),
£(k2) [2 - exdy + 26 (1) - € (), — ¢ ()¢ (), Jus (),
Or (k)| — 2ks - €1y + 2p1 - €5 (p2) ¢ (p1) — }é*(pl)#*(pz)Pl}UL(kl)-

2=z Z
I
=1

Then N, = N; — N, is manifest. Note further that s — m¥, = —(¢ + u), we have

M(dLUR — ’}/W )

i€2 ( Nt — Nu Nt 2Nu >

V25, \ t4+u 3t 3u
2

ie —u) [ Ny N,
:\/_swi(f(i—l—u; (_ )

6\/_281”(1 — 3cos6) (% ]YL“ ) (21.40)

One can see clearly from this expression that all helicity amplitudes vanish at cosf = 1/3.

t U

(Note that the definition of scattering angle 0 is different from the one in Peskin & Schroeder,
which, in our notation, is 7 — 6.) Then, by including all helicity combinations (6 in total),

we find the differential cross section, as a function of s and 6, to be

do  ma? (1—0089>2x3+18x2+9x+24—(x3—14x2+9x—8)c0829 (21.41)

dcosf 3252\ sind 36(s —m¥,) ’

where © = m?,/s.

21.4 Dependence of radiative corrections on the Higgs

boson mass

(a) We first analyze the radiative corrections to u decay process at 1-loop level with the
Higgs boson in the loop. It is easy to see that if the internal Higgs boson line is attached to
one of the external fermions, the resulted vertex will contribute a factor of m/v which can
be ignored. Therefore only the vacuum polarization diagrams are relevant, and they should

sum to a gauge invariant result.
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(b) Now we compute the vacuum polarization amplitudes of W=, Z° and photon with
Higgs contribution. We will only consider the pieces proportional to g", namely Ty (¢?),
zz(¢%), I1,,(¢*) and Iz, (¢*). It is easy to show that IL,,(¢*) and IIzz(¢?) receive no
contribution from Higgs boson at 1-loop level, while ITyyw (¢%) and I1zz(¢?) can be found by
computing the following three diagrams:

h

L h
W+M®\l\/w+
A A

0

Now we compute these three diagrams in turn for W*. The first diagram reads
d*k i —i
: 2 v

(igmw)"g / (2m)4 k2 —m2 (¢ — k)2 — m3,

. 1 d
_ Y e 0w d 2 - 3)
(47r)29 my, g /0 x A2 (2, )

Lo 9 E+/1d 1 M (21.42)
————qg‘m z log ————— )
(am2? W9 o P Am.?)]
where A(m3y,, ¢*) = xmi, + (1 —x)m? —x(1 —x)¢*, E = 2/e — v+ log 4w — log M?, and M?>
is the subtraction scale. The second one reads
d*k 1 —i
ig/2)? 2k — p)*(2k — p)¥
10/2° | i e 2k~ Pk 1)

2 47. 1 2
= g_gw/ ‘ k4/ dz 2 (4/d)]§ 2))2
4 @m)*Jo (K2 — A(miy, ¢%))

2 2

. 1
i g M

in which we have ignored terms proportional to ¢*¢”. Then, the last diagram reads
1 d*k i 2 d*k 1 —k)? —m?
_(192/2)9W/ 17.2 1 2 _g_glw/ 172 2 g )2 mgv
2 (2m)* k2 —mg 4 2m)* k2 —m; (¢ — k)? —miy,
2 d4]€ 1 ]{5,2 1— 2.2 .2
:—Q—QW/ 4/ dz Z< 93)2(] 277;W
4 (2m)* Jo (k2 — A(miy, ¢%))
: 2 1
i g
= — (47T)2Ig“ /0 dx [<2A(m%‘,, ) —miy, + (1 — x)2q2>E
2

M
+ <2A(m%,v, ) —my + (1 — w)2q2> log A ) + A(miy, q2)1 . (21.44)

Thus we have, when the three diagrams above are taken into account only,
My (q?) = <3m + . q2>E
ww 4(4 7T)2 L]

+ Oldx< (miy,q®) — [3miy, + (1 — 2)’q ]logNmLWi))} (21.45)
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Now we extract Higgs mass contribution from this expression in the large Higgs limit, and
also fix the subtraction point at M? = m},. In this limit we may take A(m?,, ¢*) ~ zm3,
and log(M?/A) ~ —log(m? /m%,). We also throw divergent terms with F, which should be
canceled out in the final expression of zeroth order natural relation after including completely

loop diagrams with W, Z, and would-be Goldstone boson internal lines. Then we have

II (q2) = —92 lm2 + <3m2 + lq2> log _m,% (21.46)
Similarly, we have, for 1177 (¢?),
5 2
g 1 9 1, my,
My () = —2F |- (3 - )1 M | 21.47
22(q") 4(4m)2 cos? 0, [ 2" T \omz + 34 0g mgz} ( )

(c) Now, we derive the zeroth order natural relation given in (21.134) of Peskin & Schroeder,
in the large Higgs mass limit. Note that II,, = II;, = 0. Thus,

2 a2 sin? 0, cos? 0, (HZZ(mQZ) _ 1Iww(0) )
2=

S

- cos? 0, — sin? 0, m? mi,
1+ 9sin 0, 2
ST o LTI L (21.48)
487 cos? 0, — sin” 0, miy,
II 2 2 II 2 5 2
s, — 2 — - Mwwlmy) | my Uzzlmy) _ Sa ) m, (21.49)

* 2 2 2 2
ms, ms, ms, 24m T myy,
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Final Project 111
Decays of the Higgs Boson

In this final project, we calculate partial widths of various decay channels of the standard
model Higgs boson. Although a standard-model-Higgs-like boson has been found at the LHC
with mass around 125GeV, it is still instructive to treat the mass of the Higgs boson as a
free parameter in the following calculation.

The main decay modes of Higgs boson include h® — ff with f the standard model
fermions, h® — WTW~—, h® — Z°Z° h® — gg and h® — ~v. The former three processes
appear at the tree level, while the leading order contributions to the latter two processes
are at one-loop level. We will work out the decay widths of these processes in the following.

In this problem we only consider the two-body final states. The calculation of decay
width needs the integral over the phase space of the two-body final states. By momentum
conservation and rotational symmetry, we can always parameterize the momenta of two final
particles in CM frame to be p; = (£,0,0,p) and ps = (F,0,0, —p), where £ = %mh by
energy conservation. Then the amplitude M will have no angular dependence. Then the
phase space integral reads

1
/dH2 M2 = — L | MmP2. (21.50)
47 mp

Then the decay width is given by
1 1 p
I'=_— [dII = — M 21.51
o [ Al IME = ) (21.51)

In part (d) of this problem, we will also be dealing with the production of the Higgs
boson from two-gluon initial state, thus we also write down the formula here for the cross
section of the one-body final state from two identical initial particle. This time, the two
ingoing particles have momenta k; = (F,0,0,k) and ky = (F,0,0, —k), with E? = k? + m?
and 2F = my where m; and my are masses of initial particles and final particle, respectively.

The final particle has momentum p = (my,0,0,0). Then, the cross section is given by

3
5 [ s MEED 0~ b~ )

7= 28s | (2r)2E,
1 2 B o 25 9
B 4mfﬁs|M| (2m)0(2k —my) = Bm?|M| (s —my), (21.52)

189
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where 3 = /1 — (4m;/my)? is the magnitude of the velocity of the initial particle in the

center-of-mass frame.

(a) The easiest calculation of above processes is h’ — ff, where f represents all quarks
and charged leptons. The tree level contribution to this process involves a single Yukawa

vertex only. The corresponding amplitude is given by

m

M = ff) = ——=a*(p1)v(pa)- (21.53)
Then it is straightforward to get the squared amplitude with final spins summed to be
m2 2mp 0o
SOIM@E > FDP = —F e [, +mp)p, —mp)] = =SE(mh —d4md). (2154)

In CM frame, the final states momenta can be taken to be p; = (F,0,0,p) and ps =
(E,0,0,—p), with E = $+my, and p* = E? —m7. Then the decay width is given by

_ 1 P mhm2 4m2 3/2
LW’ — ff) = gWWP - 8U2f (1 S : (21.55)
h

This expression can be expressed in terms of the fine structure constant «, the mass of W

boson m,, and Weinberg angle sin 6,,, as

2 2\ 3/2
(A0 — ff) = —on T (1— 4m2f) . (21.56)

8 sin? 6, m¥, my

(b) Next we consider the decay of h° to massive vector bosons W~ and Z°Z°. The
amplitude for the process h® — WTW ™ is given by

MO — W) = L0 s ), (21.57)

Then the squared amplitude with final polarizations summed reads

Z |M’2 . 9402 _ P1uP1v wo pgpg
g\ 9w m2 g m?
w w

4 2 4
T My, dmyy, 12my,
= g (1— - -+ " i (21.58)
w Moy h h
Therefore the decay width is
1 P am? _
LAY — WHw- 2 = h 1 —drt+12 1 — 4792, (21.59
( )= g MP = B (L= a4+ 1) (1 47 2, (2059)

where we have defined 7y = (my,/my)? for brevity. For h® — Z°Z° process, it can be easily
checked that nothing gets changed in the calculation except that all my, should be replaced
with my, while an additional factor 1/2 is needed to account for the identical particles in
final state. Therefore we have

3
T(h® — 2°2°) = 3%7:2#(1 — 47t 12721 — A2, (21.60)
VA w
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where 7, = (my,/mz)%.

The calculation above considered “on-shell” decay only, while for realistic 125GeV boson,
the off-shell decay turns out to be very important. That is, although h° — W+W~ and
h? — Z9Z° are kinetically forbidden when mj, = 125GeV according to above results, the
produced W or Z pair can subsequently decay into lighter fermions, and the process like
h® — W*(ff)W contributes considerable amount of Higgs decay, where W*(ff) means an
off-shell W decaying to a pair of fermions. More details can be found in [§]

c) Now we come to the process h® — gg. The leading order contribution comes from
g
diagrams with one quark loop.

The amplitude reads

1my

i./\/l(h0 — gg) = —

(igs)*e,(pr)es (p2) tr (°¢")

<o b ]

+ (1) tr {’Vyg—imq7ug+p1i—mqg—p:—mq}} (21.61)

The first trace in the integrand can be simplified through standard procedure,

v ly g—m(ﬂ ﬁJsz_qu]_%_mJ
it [+ mg)(f + = ma)(d — p, — my)]

(@ -md)[(g+p2)? - H(q p1)? —m?]

- _21/ dx/1 ’ - N (21.62)

where

@ = Gu — TP1p + YD2ps (21.63)
A =m] — (1 —x)p] —y(1 — y)p3 — 2zyp: - p2 = m, — xym;,

NW = 4dm, (pqu — pipy + 2p5q" — 20 q" + 49" ¢ + (mfl —p1- Py — q2)7]“”) (21.64)
Then we can reexpress N*¥ in terms of ¢, p; and p, and drop off all terms linear in ¢ which

integrates to zero. It is most easy to work with definite helicity states for final gluons. Then
the result gets simplified if we dot N*” with polarization vectors as N*e’ (p1)e; (p2). Note



192

Final Project Ill. Decays of the Higgs Boson

that €*(p;)-p; = 0 with ¢, j = 1,2. Note also the on-shell condition p} = p3 = 0, p1-ps = $mj}.
then

NG pn) = oy [+ (o= B+ (4= D0l ). (2169

The same calculation shows that the second trace in the integrand of (21.61) gives identical
result with the first trace. To check the gauge invariance of this result, one can simply
replace e;(pl) with p1, in the expression above, then it is straightforward to find that
N#p1,6;(p2) = 0. Similarly, it can also be checked that N*"e},(p;)pa, = 0.

Then the amplitude (21.61) now reads

d, NH¢ *
iM(RY = gg) = mq 5“b/ da:/ dy/ % ]il)A)gp2>, (21.66)

where the relation tr (t%t%) = 2 +6° in fundamental representation is also used. The momen-
tum integration is finite as d — 4 under dimensional regularization, and can now be carried
out directly to be

. 2198 (1 — 4zy)m?
IM(R® — gg) = q 5%e( *(p2 / da:/ —h
(4m)2v m2 — xyms
igm? . .
=— 6th6 be*(py) - € (p2)1f(Ty), (21.67)

where 7, = (my,/m,)?, and

/ / 1-— 493y
i(1y) = dz
1 — TYTy
Note that the inner product between two polarization vectors is nonzero only for €} - €*

and €* - €. Therefore the squared amplitude with final states polarizations, color indices
summed (6%d,;, = 8) is,

2,4
doimy,

M = g)* = M (1 = gg) P + IM_y (0 > gg)|? =

[Tp(m)?, (21.68)

and the decay width is

2 2
amp, m Qg
D~ 99) = (gogy) - os - s 11l (21.69)

where an additional factor 1/2 should be included in (21.51) when calculating T'(h° — gg)
because the two gluons in final states are identical particles. This result is easily generalized

for N, copies of quarks to be

2
: (21.70)

2 2
amy, mi; ol
F(h0—>gg): <85jn29 ) m%:/ '971-2 ‘ E If(Tq)
v q
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(d) Now we calculate the cross section for the Higgs production via gluon fusion at the
leading order. The amplitude is simply given by the result in (c), namely (21.67). When

we take the square of this amplitude, an additional factor (% . %)2 should be included, to

average over helicities and color indices of initial gluons. Then, comparing (21.52) with
(21.51), we find that

2

(g9 = 1°) = ——6(5 —m2)T(R° = gg), (21.71)

8mh

where the hatted variable § is the parton level center-of-mass energy. We note again that

L
2

over the initial degrees of freedom of two gluons, and an factor of 1/2 in TI'(h°® — gg) to

the correct formula is obtained by including an factor of (% )2 in o(gg — h°) to average

count the identical particles in the final state. Then, from (21.70), it is straightforward to

find
Z I¢(7q)

Then the proton-level cross section of Higgs boson production via gluon-gluon fusion is given

by

m;). (21.72)

o(gg — B°) =

576 sin (9 m

UGGF (Pl PQ) — ho)
/ dﬂ?l/ d.TQ fg 1 fg xz) ( (xlpl)g(xQPQ) — ho)

_ / dMQdY‘—a<I1’ z2)

O(M2Y) fg(l'l)fg(xQ)O'(g(:[}lpl)g(l-QPQ) N hO)

/dMQdY L 1 fg(x1)T2fy(22)0 (9(z1P1)g(zoPs) — h°), (21.73)

where M? = x,x55 is the center-of-mass energy of two initial gluons, while s is the center-of-
mass energy of two initial protons, and Y, given by expY = \/m , is the rapidity of the
produced Higgs boson relative to the center-of-mass frame of the proton system. (Note that
in our case M? = mh ) The relations between M?, Y and the momentum fractions xy, x5 can
be inverted to give x; = (M/\/s)e¥ and xo = (M/\/_) ~Y. Furthermore, f, is the parton
distribution function of the gluon in a proton, which we will take to be f; = 8(1 — z)"/x in
the following calculations. Then the cross section can be evaluated to be

O'GGF( (P1) (Pz) — h')

ij Tq)

/_:) dy (1 - ”\;g eY)7(1 - %e—y>7, (21.74)

where Yy, given by cosh Yy = /s/2my, is the largest possible rapidity of a produced Higgs

9 sin? 9 m

boson. We plot this cross section as a function of the center-of-mass energy /s of the pp
pair, with the Higgs boson’s mass taken to be m;, = 30GeV and m;,, = 125GeV, respectively,
in Figure
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50 T T T T T T
20t ]
2 my,=30 GeV.
g
S 10} :
ot
2 sl m,=125 GeV ]
g
@,
2 - 4
1 Il Il Il Il Il
1 2 5 10 20 50
Vs /GeV

(e) Next we consider the process h® — 2v. The contribution to this decay channel at the
leading (1-loop) level is from two types of diagrams, one with a fermion loop and the other
with a W boson (and related would-be Goldstone boson) loop. The former contribution is
easy to find by virtue of the result in (c) for h° — gg. The calculation here is in fully parallel,
except that we should include the factor for the electric charges of internal fermions ()¢, take
away the color factor tr (t?t?), change the strong coupling g, by the electromagnetic coupling
e, and sum over all charged fermions. Note that the color factor enters the expression of
the decay width as | tr (¢%¢")]> = $0%°26% = 2, then it is straightforward to write down the

fermion contribution to the h° — 27 to be

2
my,

MR — 279); = (

amy, )

21.75
8sin? 6, ( )

O‘E 2 2
TR ’ZQch(f)[f(Tf) ,
7

T2
mw

where N, (f) is the color factor, equal to 3 for quarks and 1 for charged leptons.

(f) Now we come to the W-loop contributions to h° — 27. In Feynman-'t Hooft gauge, we
should also include the corresponding Goldstone loop diagrams. Then there are 13 diagrams

in total. We compute them as follows,
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o LGty v oo vo o,y
IM® = — 75— (—ie?) (207 — P — PP )€l (p1)es (p2)

2 2
x/(gjf)’ D (a) Dy (k — )
. (473;/2 T () - € (pa)(d ~ DI(2 ~ 4)
<[ e L0
iM®P) = %(—2%)(2162)6*@1)-6*(192)/(;—;?;1193@)&%—61)
e () T~ )
" 1 dz (21.77)

2 dj2-

ﬁ” —

ig?sinf,, ig*vsinf, . . d?
J 5 Y 5 € (p1) - € (p2)/(—qus(Q)DW(p2 —q)

iM© = im@D =
i i o)

i emW*

:_(47T)d/2 ,U (p1) - € (p2)T(2 - d)<m J2-df2’ (21.78)
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. 9 d
L P ) [ G
X [ (2q — p1)" + 0" (2p1 — ) — ™ (p1 + q)"]
x [n5(2q + p2)” — n3(q — p2)” — 17" (2p2 + @)
i e*mi, [/ (5 —x—y+dzy)m?
= € (p1) - € (p dxdy
(4m)d/2 v (p1) - €(p2) mé, — xyms
dxdy
+6(d—1)r(2—g)/( - -

= |

iM© = Dw(q)Dw(q — p1)Dw(q + p2)

(21.79)

iIMD = (=2i\v)(—ie)’€, (p1)€;(p2) / (g%;d@q —p1)"(2q + p2)”

X Ds(q)Ds(q — p1)Ds(q + p2)
i e*mi,

= (47r)d/2 v € (Pl).e*(m)r(g _ %)/ 2dxdy

(2, — oymZ

(21.80)

d
)(16)26;(]91)6;(]72)/ éﬂzd(—l)(q—pﬁ“qy

X Dy(q)Ds(q — p1)Ds(q + p2)
i e?md

im2,

iM® :<_

dxdy
miy — aym;)?4/?
dq

_ o oq ig igttgPusin®, ., . o
IM® = im0 = g%(—le)%(m)%(m) / W(q —p1— k)

X [10A(2q + p2)” = n5(q — p2)o — 15(202 + )]
X Dw(q)Ds(q — p1)Dw(q + p2)
i e*mi; (1—2)(1+y)m?
- “(p1) - € dzd
(4m)¥2 v (1) - € (p2) {/ e m, — xym?

1 dzdy
——(d-1r2-4<

- 1re-4) [ |
ig?v (ig% sin 6,
2 2

(21.81)

(21.82)

iMO =

>26*(p1) - €"(pa)

X/(;lides@)DW(q_pl)DW(q +p2)

1 emy |, .
- (47)d/2 UW € (p1) - € (pz)/dxdy 3

_ 27
my, — Tyms;

2
2myy,

(21.83)

) . i i 2USin6w . * *
iM® = MmO = %gT(—le)ﬁu(pl)ey(Zh)

dd
X / 27r§d (p1+ 2p2 + 0)"(2q + p2)"Ds(q) Dw (q — p1)Ds(q + p2)

—~

e2m12/V * * d dxdy
- ) o) [y (21.81)
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M) = (—21@)(@)26*(1)1) - €"(p2)
d
X /ET;DW(CJ)DS(Q — p1)Ds(q + p2)

: 2,2 2
1 e'my miy

T 4m)i2 o ¢(p1) - € (p )/dxdy—mw—xymh

The results can be summarized as,

: 2
1 emw*

@mi2

M) = (p1) - € (p2)[A-TQ =4+ B|, (X =ab--,m)

with the coefficients A and B for each diagram listed in Table.

Diagrams A B
(a) —2(d—1)J; 0
(O+(d) | —2(m3 )12 0
(e) 6(d—1)Jy J3
(8) —J 0
(h)+(i) —(d—1)Js 2J,
§) 0 2(mw fmp)*Js
(k)+(1) 2J5 0
(m) 0 J5
(b) —(mn/mw)* 1 0
(f) Q(mh/mw)2J2 0
where
1
=), dx o= D)

—1— %/ dz log (mW z(1— x)mi) +0(€),

1
Jo= [ d
: / / (mfy — aymi =07

1 11—z
— - E/ dx/ dy log <m%,[, — xym,%) + O(é?),
2 o
/dx 5—x—y+4a¢y)
0

0 mW — mymh

1 1—x
1 — 1 +
/ e x) y)mh
0 0 mW — zym?

Js = / dz / dy——"——
m¥, — wymh

&~
I

)

Y

(21.85)

(21.86)

(21.87)

(21.88)
(21.89)
(21.90)

(21.91)

To see that the divergences of all diagrams cancel among themselves, it just needs to show
that sum of all A-coefficients is of order e. This is straightforward by noting that J; =

14+ O(e) and Jy = 1/2 + O(e).
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Before reaching the complete result, let us first find out the W-loop contribution in the
limit m? < mj;,, although it seems unlikely to be true within our current knowledge. To

find the amplitude in this limit, we expand the five integrals Jy, - -+ , J5 in terms of my,/myy,
JNl——lom +€mh JNi—Elo mi +im—i
! STW T 10 m2, 25 T W TR,
J3 ’ mh J4 ~ E—mj , J5 ~ l—mjl ! (mh ) .
3 m,’ 24 my, 2my, 24

Then the amplitude can be recast into

iM = ?Z:;W € (p1) - € (p2) {C<% —y+ log47r) +D-logmyy + E+ F - :nn_%:/] (21.92)
Diagrams C D E F
(a) 6 3 1
D) | -2 1 0| o
(e) 9 —9/2 | =6 37/12
(g) —1/2 1/4 0 | —1/24
(h)+(1) ~3/2 3/4 1| 19/24
G) 0 0 1| 1/12
(1)+() 1 ~1/2 0| 1/12
(m) 0 0 0 1/2
(b) —(mn/mw)? | (mp/mw)*/2 | 0 0
(f) (mp/mw)* | —(mp/mw)*/2 | 0 0
sum 0 0 0 7/2

Therefore, the amplitude in the limit m3 < m?%, is given by

7 iami
Sk () - € (pa), (21.93

where the factor 2 counts the identical contributions from the diagrams with two final

IM(hY — 27)w =2-

photons changed. Now we sum up the fermion-loop contribution found in (e) and the result
here to get the h’ — 2+ amplitude in the light Higgs limit,

C 2
. . 1lamy, 9 21
M= [Zf:@ch(f) 4] (1) - € (p2)- (21.94)
Then the corresponding partial width is given by
21
L =2 :<amh )'mh Ne( 21,
("= 2) 8sin20,/ m2 18n? ZQf (21.95)

Now we retain my, as a free variable. Then the various diagrams sum into the following
full expression for the W-loop contribution to h® — 27,

iami

IM(R® — 279)w = € (p1) - € (p2) Iw (Tw ), (21.96)

2mv
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where the factor Iy (mw), as a function of 7 = (my/mw)?, is given by

1
IW(TW) = 7_— |:611(Tw) — 8]2(Tw) + TW(II(TW) — ]Q(Tw)) + ]3(Tw) s (2197)
W
where
1
I(tw) E/ dz log [1 — (1 — z)mw], (21.98)
’ 1 11—z
L(tw)=2 [ dz dy log (1 — zymw), (21.99)
0 0
1 1—x
8—3 4
L(7w) z/ dg;/ qy B=3eHyFdry)mw (21.100)
0 0 1 —zytw
Then the full expression for the partial width of h° — 27y at one-loop is
D — 29) = (20 ) . 2 S Q2N ) — D (o) L e
= : : : . Tr) — w)| , :
V= \8sin? 6,/ m2, 1872 o AT AwiTw

(h) Collecting all results above (expect the 7 channel, which is quite small*), we plot
the total width and decay branching fractions of the Higgs boson in Figures 21.6 and 21.7,
respectively.

10+ 7

Total Width/GeV
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Figure 21.6: The total width of the Higgs boson as a function of its mass.

*— but very important!
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Figure 21.7: The Higgs decay branching fractions of t¢, bb, cé, vvr—, WW, ZZ and gg

channels, as functions of Higgs mass.
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